A Bayesian Active Learning Experimental Design for Inferring Signaling Networks

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10229))

  • 2555 Accesses

Abstract

Machine learning methods for learning network structure, applied to quantitative proteomics experiments, reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity.

We describe a active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic datasets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared to an unguided choice of interventions, and avoids redundant interventions, thereby increasing the effectiveness of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandura, D.R., Baranov, V.I., Ornatsky, O.I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J.E., Tanner, S.D.: Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81(16), 6813–6822 (2009)

    Article  Google Scholar 

  2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Science & Business Media, New York (2013)

    Google Scholar 

  3. Castelo, R., Siebes, A.: Priors on network structures. Biasing the search for Bayesian networks. Int. J. Approx. Reason. 24(1), 39–57 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T.J., Kotecha, N.: Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. In: Fienberg, H.G., Nolan, G.P. (eds.) High-Dimensional Single Cell Analysis. Current Topics in Microbiology and Immunology, vol. 377, pp. 127–157. Springer, Heidelberg (2014). doi:10.1007/82_2014_364

    Chapter  Google Scholar 

  5. Chickering, D.M.: A transformational characterization of equivalent Bayesian network structures. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 87–98. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  6. Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach. Learn. 29(2–3), 181–212 (1997)

    Article  MATH  Google Scholar 

  7. Cho, H., Berger, B., Peng, J.: Reconstructing causal biological networks through active learning. PloS ONE 11(3), e0150611 (2016)

    Article  Google Scholar 

  8. Cooper, G.F., Yoo, C.: Causal discovery from a mixture of experimental and observational data. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 116–125. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  9. Eaton, D., Murphy, K.P.: Exact Bayesian structure learning from uncertain interventions. In: International Conference on Artificial Intelligence and Statistics, pp. 107–114 (2007)

    Google Scholar 

  10. Eberhardt, F., Glymour, C., Scheines, R.: On the number of experiments sufficient and in the worst case necessary to identify all causal relations among N variables (2012). ar**v preprint: ar**v:1207.1389

  11. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical LASSO. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  12. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)

    Article  Google Scholar 

  13. Friedman, N., et al.: Learning belief networks in the presence of missing values and hidden variables. ICML 97, 125–133 (1997)

    Google Scholar 

  14. Friedman, N., Goldszmidt, M., Wyner, A.: Data analysis with Bayesian networks: a bootstrap approach. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 196–205. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  15. Friedman, N., Koller, D.: Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50(1–2), 95–125 (2003)

    Article  MATH  Google Scholar 

  16. Guan, Y., Dunham, M., Caudy, A., Troyanskaya, O.: Systematic planning of genome-scale experiments in poorly studied species. PLoS Comput. Biol. 6(3), e1000698 (2010)

    Article  Google Scholar 

  17. He, Y.-B., Geng, Z.: Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res. 9(11), 2523–2547 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  19. Ide, J.S., Cozman, F.G.: Random generation of Bayesian networks. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 366–376. Springer, Heidelberg (2002). doi:10.1007/3-540-36127-8_35

    Chapter  Google Scholar 

  20. Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8(1), 565 (2012)

    Google Scholar 

  21. Imoto, S., Kim, S.Y., Shimodaira, H., Aburatani, S., Tashiro, K., Kuhara, S., Miyano, S.: Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression. Genome Inform. 13, 369–370 (2002)

    Google Scholar 

  22. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: Kegg as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1), D457–D462 (2016)

    Article  Google Scholar 

  23. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)

    Article  Google Scholar 

  24. Koller, D., Friedman, N., Models, P.G.: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  25. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  26. Margaritis, D.: Learning Bayesian network model structure from data. Ph.D. thesis, U.S. Army (2003)

    Google Scholar 

  27. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from observations and experiments: a decision theoretic approach. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, pp. 58–69. Springer, Heidelberg (2006). doi:10.1007/11681960_8

    Chapter  Google Scholar 

  28. Murphy, K.P.: Active learning of causal Bayes net structure (2001)

    Google Scholar 

  29. Ness, R.O., Sachs, K., Vitek, O.: From correlation to causality: statistical approaches to learning regulatory relationships in large-scale biomolecular investigations. J. Proteome Res. 15, 683–690 (2016)

    Article  Google Scholar 

  30. Pawson, T., Warner, N.: Oncogenic re-wiring of cellular signaling pathways. Oncogene 26(9), 1268–1275 (2007)

    Article  Google Scholar 

  31. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Perez, O.D., Nolan, G.P.: Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20(2), 155–162 (2002)

    Google Scholar 

  33. Pournara, I., Wernisch, L.: Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 20(17), 2934–2942 (2004)

    Article  Google Scholar 

  34. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing network inference: the DREAM predictive signaling network challenge. Sci. Signal. 4(189), mr7 (2011)

    Article  Google Scholar 

  35. Rossell, D., Müller, P.: Sequential stop** for high-throughput experiments. Biostatistics 14(1), 75–86 (2013)

    Article  Google Scholar 

  36. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intelligence: A Modern Approach, vol. 2. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  37. Sachs, K., Gentles, A.J., Youland, R., Itani, S., Irish, J., Nolan, G.P., Plevritis, S.K.: Characterization of patient specific signaling via augmentation of Bayesian networks with disease and patient state nodes. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6624–6627. IEEE (2009)

    Google Scholar 

  38. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Sci. (N.Y., NY) 308(5721), 523–529 (2005)

    Article  Google Scholar 

  39. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010)

    Article  Google Scholar 

  40. Scutari, M.: On the prior and posterior distributions used in graphical modelling. Bayesian Anal. 8(3), 505–532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M.K., van Iersel, M., Lauffenburger, D.A., Saez-Rodriguez, J.: CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6(1), 1 (2012)

    Article  Google Scholar 

  42. Terfve, C., Saez-Rodriguez, J.: Modeling signaling networks using high-throughput phospho-proteomics. In: Goryanin, I., Goryachev, A. (eds.) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol. 736, pp. 19–57. Springer, New York (2012). doi:10.1007/978-1-4419-7210-1_2

    Chapter  Google Scholar 

  43. Tian, J., Pearl, J.: Causal discovery from changes. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 512–521. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  44. Tong, S., Koller, D.: Active learning for structure in Bayesian networks. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 863–869. Lawrence Erlbaum Associates Ltd. (2001)

    Google Scholar 

  45. Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank M. Scutari for guidance in using the R package bnlearn. This work was supported in part by the NSF CAREER award DBI-1054826, and by the Sy and Laurie Sternberg award to OV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Osazuwa Ness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ness, R.O., Sachs, K., Mallick, P., Vitek, O. (2017). A Bayesian Active Learning Experimental Design for Inferring Signaling Networks. In: Sahinalp, S. (eds) Research in Computational Molecular Biology. RECOMB 2017. Lecture Notes in Computer Science(), vol 10229. Springer, Cham. https://doi.org/10.1007/978-3-319-56970-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56970-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56969-7

  • Online ISBN: 978-3-319-56970-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation