Engineering Value Chain Modelling and Optimization

  • Chapter
  • First Online:
Value Creation through Engineering Excellence

Abstract

The aim of this chapter is to introduce the modelling and optimization methods in engineering value chain decision-making and show the effectiveness and advances of solving management problems by information technologies. There are many critical problems related to decision-making along the engineering value chain. Based on the characteristics of a specific problem, different decision methods are developed and applied. In this chapter, we summarize several typical value chain decision problems and related decision methods and introduce the popular decision-making methods based on mathematic models and optimization algorithms. A complex engineering value chain construction decision problem is investigated, a multi-objective model is then developed, and the genetic algorithm-based solution procedure is proposed. Finally, numerical experiment and discussion are conducted to demonstrate the benefit of the method. Further, future development trends in engineering value chain modelling and optimization are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abuali, F. N., Wainwright, R. L., & Schoenefeld, D. A. (1995, July). Determinant factorization: A new encoding scheme for spanning trees applied to the probabilistic minimum spanning tree problem. Proceedings of the Sixth International Conference on Genetic Algorithms, (pp. 470–477).

    Google Scholar 

  • Altiparmak, F., Gen, M., Lin, L., & Karaoglan, I. (2009). A steady-state genetic algorithm for multi-product supply chain network design. Computers & Industrial Engineering, 56(2), 521–537.

    Article  Google Scholar 

  • Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275–284.

    Article  Google Scholar 

  • BaÅŸligil, H., Kara, S. S., Alcan, P., Özkan, B., & ÇaÄŸlar, E. G. (2011). A distribution network optimization problem for third party logistics service providers. Expert Systems with Applications, 38(10), 12730–12738.

    Article  Google Scholar 

  • Beamish, P. W. (1987). Joint ventures in LDCs: Partner selection and performance. Management International Review, 23–37.

    Google Scholar 

  • Boer, L. D., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7(2), 75–89.

    Article  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chai, J., Liu, J. N., & Ngai, E. W. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872–3885.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management Science, 4(1), 38–91.

    Article  Google Scholar 

  • Chou, H., Premkumar, G., & Chu, C. H. (2001). Genetic algorithms for communications network design-an empirical study of the factors that influence performance. IEEE Transactions on Evolutionary Computation, 5(3), 236–249.

    Article  Google Scholar 

  • Cooper, L. (1963). Location-allocation problems. Operations Research, 11(3), 331–343.

    Article  Google Scholar 

  • Creazza, A., Dallari, F., & Rossi, T. (2012). Applying an integrated logistics network design and optimisation model: The pirelli tyre case. International Journal of Production Research, 50(11), 3021–3038.

    Article  Google Scholar 

  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472–1483.

    Article  Google Scholar 

  • Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers & Industrial Engineering, 62(1), 368–407.

    Article  Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1993, June). Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. Proceedings of the Fifth International Conference on Genetic Algorithms, (pp. 416–423).

    Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization, Vol. 7. Wiley.

    Google Scholar 

  • Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. Journal of Cleaner Production, 98, 66–83.

    Article  Google Scholar 

  • Gumus, A. T., Guneri, A. F., & Keles, S. (2009). Supply chain network design using an integrated neuro-fuzzy and MILP approach: A comparative design study. Expert Systems with Applications, 36(10), 12570–12577.

    Article  Google Scholar 

  • Horenbeek, A. V., Buré, J., Cattrysse, D., Pintelon, L., & Vansteenwegen, P. (2013). Joint maintenance and inventory optimization systems: A review. International Journal of Production Economics, 143(2), 499–508.

    Article  Google Scholar 

  • Horn, J., Nafpliotis, N., & Goldberg, D. (1994, June). A niched pareto genetic algorithm for multiobjective optimization.In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, (pp. 82–87).

    Google Scholar 

  • Kiresuk, T. J., & Sherman, M. R. E. (1968). Goal attainment scaling: A general method for evaluating comprehensive community mental health programs. Community Mental Health Journal, 4(6), 443–453.

    Article  Google Scholar 

  • Knowles, J., & Corne, D. (1999, July). The pareto archived evolution strategy: A new baseline algorithm for paretomultiobjective optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation.

    Google Scholar 

  • Lee, J. H. (2014). Energy supply planning and supply chain optimization under uncertainty. Journal of Process Control, 24(2), 323–331.

    Article  Google Scholar 

  • Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138.

    Article  Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—A review. European Journal of Operational Research, 196(2), 401–412.

    Article  Google Scholar 

  • Monteiro, M. M., Leal, J. E., & Raupp, F. M. P. (2010). A four-type decision-variable MINLP model for a supply chain network design. Mathematical Problems in Engineering, 2010.

    Google Scholar 

  • Nemhauser, G. L. (1989). Handbook in Operations Research and Management Science. North-Holland.

    Google Scholar 

  • Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11.

    Article  Google Scholar 

  • Schaffer, J. D. (1985, July). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms , (pp. 93–100).

    Google Scholar 

  • Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7), 547–564.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.

    Article  Google Scholar 

  • Turban, E., & Meredith, J. R. (1998). Fundamentals of management science.New york: McGraw-Hill College.

    Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, L., Xu, X. (2018). Engineering Value Chain Modelling and Optimization. In: Zhang, Y., Gregory, M. (eds) Value Creation through Engineering Excellence. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-56336-7_9

Download citation

Publish with us

Policies and ethics

Navigation