Epigenetic Regulation of Plant Heat Shock Protein (HSP) Gene Expression

  • Chapter
  • First Online:
Heat Shock Proteins and Plants

Part of the book series: Heat Shock Proteins ((HESP,volume 10))

  • 1121 Accesses

Abstract

Heat shock proteins (HSPs) are the key components of plants’ adaptive mechanism to maintain protein homeostasis. HSPs play critical roles not only in response to unfavorable environmental conditions, but also during normal plant growth and development. Compared with yeast and animals, plants’ HSP-encoding genes have expanded into a large gene family, likely because of their sessile lifestyle. These genes have divergent expression patterns in various plant organs, and respond at various levels to heat treatment. While the genetic control of plant HSP genes by upstream heat shock factors has been well studied, the epigenetic regulation of these stress-responsive genes has emerged as a critical pathway implicated in the plant response to environmental changes. In this chapter, we summarize the progress regarding the epigenetic regulation of plant HSP gene expression. The common and disparate epigenetic pathways and factors in the heat response in plants and other organisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ARP6:

ACTIN-related protein 6

ASF1:

anti-silencing function 1

FACT:

facilitates chromatin transcription

HSF:

heat shock factor

HSP:

heat shock protein

NRP1:

NAP1-related protein 1

PARP:

poly (ADP-ribose) polymerase

Pol II:

Polymerase II

PP2A:

protein phosphatase type 2A

SPT16:

suppressor of TY16

SWR1:

SWI2/SNF2-related 1

TSS:

transcription start site

References

  • Ayaydin F, BĂ­rĂł J, Domoki M, Ferenc G, FehĂ©r A (2015) Arabidopsis NAP-related proteins (NRPs) are soluble nuclear proteins immobilized by heat. Acta Physiol Plant 37:1–8

    Article  CAS  Google Scholar 

  • Biro J, Farkas I, Domoki M, Otvos K, Bottka S, Dombradi V, Feher A (2012) The histone phosphatase inhibitory property of plant nucleosome assembly protein-related proteins (NRPs). Plant Physiol Biochem 52:162–168

    Article  CAS  PubMed  Google Scholar 

  • Boden SA, Kavanova M, Finnegan EJ, Wigge PA (2013) Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol 14:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plants. PLoS One 10:e0122933

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erkina TY, Erkine AM (2006) Displacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation. Mol Cell Biol 26:7587–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47

    Article  PubMed  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inouye S, Fujimoto M, Nakamura T, Takaki E, Hayashida N, Hai T, Nakai A (2007) Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem 282:33210–33217

    Article  CAS  PubMed  Google Scholar 

  • Ivaldi MS, Karam CS, Corces VG (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21:2818–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Shirasu K (2012) The HSP90 complex of plants. Biochim Biophys Acta 1823:689–697

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kremer SB, Gross DS (2009) SAGA and Rpd3 chromatin modification complexes dynamically regulate heat shock gene structure and expression. J Biol Chem 284:32914–32931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Lavania D, Dhingra A, Siddiqui MH, Al-Whaibi MH, Grover A (2015) Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Plant Physiol Biochem 86:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E (2005) Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell 17:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    PubMed  PubMed Central  Google Scholar 

  • March-Diaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2:565–577

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Kummer E, Bukau B (2015) Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak SJ, Corces VG (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14:3003–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak SJ, Pai CY, Corces VG (2003) Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol Cell Biol 23:6129–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petesch SJ, Lis JT (2012) Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol Cell 45:64–74

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18:427–437

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84:125–143

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strenkert D, Schmollinger S, Sommer F, Schulz-Raffelt M, Schroda M (2011) Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii. Plant Cell 23:2285–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL (2013) A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Weng M, Yang Y, Feng H, Pan Z, Shen WH, Zhu Y, Dong A (2014) Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37:2128–2138

    Article  CAS  PubMed  Google Scholar 

  • Wu C (1980) The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286:854–860

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ (2012) Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci 13:15706–15723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program; Grant 2012CB910500), and by the National Natural Science Foundation of China (Grant NSFC31271374). We thank many members of our laboratory and colleagues for productive collaborations in our studies of the plant heat response over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ren, Y., Zhu, Y. (2016). Epigenetic Regulation of Plant Heat Shock Protein (HSP) Gene Expression. In: Asea, A., Kaur, P., Calderwood, S. (eds) Heat Shock Proteins and Plants. Heat Shock Proteins, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-46340-7_16

Download citation

Publish with us

Policies and ethics

Navigation