The Biomechanical Environment and Impact on Tissue Fibrosis

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

The implantation of materials into the body elicits a foreign body response (FBR) that includes formation of a fibrous capsule around the implanted material. The formation of the fibrous capsule has many similarities to fibrotic responses to other insults or stressors. A number of biochemical factors are known to promote a fibrotic response including growth factors, cytokines, and hormones. Much less is known regarding the role of biomechanical forces in tissue fibrosis. The biomechanical environment plays a fundamental role in embryonic development, tissue maintenance, and pathogenesis. Mechanical forces play particularly important roles in the regulation of connective tissues including not only bone and cartilage but also the interstitial tissues of most organs. In vivo studies have correlated changes in mechanical load to modulation of the extracellular matrix and have indicated that increased mechanical force contributes to the enhanced expression and deposition of extracellular matrix components or fibrosis. A variety of in vitro models have been utilized to evaluate the effects of mechanical force on extracellular matrix-producing cells. In general, application of mechanical stretch, fluid flow, and compression results in enhanced expression and deposition of extracellular matrix components. More recent studies have indicated that tissue rigidity also provides profibrotic signals to cells. This is particularly relevant to implants as the implanted material generally alters the local biomechanical environment, which may promote fibrosis or the formation of the fibrous capsule. The mechanisms whereby cells detect mechanical signals and transduce them into biochemical responses have received considerable attention. Cell surface receptors for extracellular matrix components and intracellular signaling pathways are instrumental in the mechanotransduction process. Understanding the effects of the biomechanical environment and the mechanisms, whereby mechanical forces are transduced into biochemical and molecular signals in the cell, will provide important insight into tissue fibrosis and fibrous capsule formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50(2-3):81–92

    Article  Google Scholar 

  2. Benjamin M, Hillen B (2003) Mechanical influences on cells, tissues and organs—‘mechanical morphogenesis’. Eur J Morphol 41(1):3–7

    Article  Google Scholar 

  3. Farge E (2011) Mechanotransduction in development. Curr Top Dev Biol 95:243–265

    Article  Google Scholar 

  4. Jones EA (2011) Mechanical factors in the development of the vascular bed. Respir Physiol Neurobiol 178(1):59–65

    Article  Google Scholar 

  5. Bassett CA, Herrmann I (1961) Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 190:460–461

    Article  Google Scholar 

  6. Rodan GA, Mensi T, Harvey A (1975) A quantitative method for the application of compressive forces to bone in tissue culture. Calcif Tissue Res 18(2):125–131

    Article  Google Scholar 

  7. Leung DY, Glagov S, Mathews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191(4226):475–477

    Article  Google Scholar 

  8. Leung DY, Glagov S, Mathews MB (1977) A new in vitro system for studying cell response to mechanical stimulation. Different effects of cyclic stretching and agitation on smooth muscle cell biosynthesis. Exp Cell Res 109(2):285–298

    Article  Google Scholar 

  9. Dzau VJ (1993) Local contractile and growth modulators in the myocardium. Clin Cardiol 16(5 Suppl 2):II5–II9

    Article  Google Scholar 

  10. Samuel JL, Dubus I, Contard F et al (1990) Biological signals of cardiac hypertrophy. Eur Heart J 11 Suppl G:1–7

    Google Scholar 

  11. Lohler J, Timpl R, Jaenisch R (1984) Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell 38(2):597–607

    Article  Google Scholar 

  12. Brenner DA, Kisseleva T, Scholten D et al (2012) Origin of myofibroblasts in liver fibrosis. Fibrogenesis Tissue Repair 5(Suppl 1):S17

    Article  Google Scholar 

  13. Hinz B (2012) Mechanical aspects of lung fibrosis: a spotlight on the myofibroblast. Proc Am Thorac Soc 9(3):137–147

    Article  Google Scholar 

  14. Hinz B, Phan SH, Thannickal VJ et al (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355

    Article  Google Scholar 

  15. Park S, Park M, Kim BH et al (2015) Acute suppression of TGF-ss with local, sustained release of tranilast against the formation of fibrous capsules around silicone implants. J Control Release 200:125–137

    Article  Google Scholar 

  16. Wolfram D, Rainer C, Niederegger H et al (2004) Cellular and molecular composition of fibrous capsules formed around silicone breast implants with special focus on local immune reactions. J Autoimmun 23(1):81–91

    Article  Google Scholar 

  17. Bowen T, Jenkins RH, Fraser DJ (2013) MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol 229(2):274–285

    Article  Google Scholar 

  18. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420

    Article  Google Scholar 

  19. Tomeno W, Yoneda M, Imajo K et al (2013) Evaluation of the Liver Fibrosis Index calculated by using real-time tissue elastography for the non-invasive assessment of liver fibrosis in chronic liver diseases. Hepatol Res 43(7):735–742

    Article  Google Scholar 

  20. Yin MF, Lian LH, Piao DM et al (2007) Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model. World J Gastroenterol 13(8):1214–1220

    Article  Google Scholar 

  21. Lam WA, Cao L, Umesh V et al (2010) Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol Cancer 9:35

    Article  Google Scholar 

  22. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  Google Scholar 

  23. Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci U S A 109(26):10334–10339

    Article  Google Scholar 

  24. Schaller MD, Borgman CA, Cobb BS et al (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89(11):5192–5196

    Article  Google Scholar 

  25. Schedin P, Keely PJ (2011) Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 3(1):a003228

    Article  Google Scholar 

  26. Ulrich TA, de Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174

    Article  Google Scholar 

  27. Choi TY, Ahmadi N, Sourayanezhad S et al (2013) Relation of vascular stiffness with epicardial and pericardial adipose tissues, and coronary atherosclerosis. Atherosclerosis 229(1):118–123

    Article  Google Scholar 

  28. Wells RG (2013) Tissue mechanics and fibrosis. Biochim Biophys Acta 1832(7):884–890

    Article  Google Scholar 

  29. Ho YY, Lagares D, Tager AM et al (2014) Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 10(7):390–402

    Article  Google Scholar 

  30. Clark RA, Ashcroft GS, Spencer MJ et al (1996) Re-epithelialization of normal human excisional wounds is associated with a switch from alpha v beta 5 to alpha v beta 6 integrins. Br J Dermatol 135(1):46–51

    Article  Google Scholar 

  31. Hinz B (2009) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11(2):120–126

    Article  Google Scholar 

  32. Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345–C1350

    Google Scholar 

  33. Yeung T, Georges PC, Flanagan LA et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    Article  Google Scholar 

  34. Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204(1):198–209

    Article  Google Scholar 

  35. Engler AJ, Rehfeldt F, Sen S et al (2007) Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol 83:521–545

    Article  Google Scholar 

  36. Georges PC, Hui JJ, Gombos Z et al (2007) Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 293(6):G1147–G1154

    Article  Google Scholar 

  37. Mauch C, Adelmann-Grill B, Hatamochi A et al (1989) Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett 250(2):301–305

    Article  Google Scholar 

  38. Johnson LA, Rodansky ES, Sauder KL et al (2013) Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis 19(5):891–903

    Article  Google Scholar 

  39. Liu F, Mih JD, Shea BS et al (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706

    Article  Google Scholar 

  40. Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154(3):871–882

    Article  Google Scholar 

  41. Galie PA, Westfall MV, Stegemann JP (2011) Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices. Cardiovasc Pathol 20(6):325–333

    Article  Google Scholar 

  42. Huang X, Yang N, Fiore VF et al (2012) Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348

    Article  Google Scholar 

  43. Olsen AL, Bloomer SA, Chan EP et al (2011) Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol 301(1):G110–G118

    Article  Google Scholar 

  44. Shi Y, Dong Y, Duan Y et al (2013) Substrate stiffness influences TGF-beta1-induced differentiation of bronchial fibroblasts into myofibroblasts in airway remodeling. Mol Med Rep 7(2):419–424

    Google Scholar 

  45. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172

    Article  Google Scholar 

  46. Friedman SL, Roll FJ, Boyles J et al (1989) Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 264(18):10756–10762

    Google Scholar 

  47. Gaca MD, Zhou X, Issa R et al (2003) Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol 22(3):229–239

    Article  Google Scholar 

  48. Wang H, Haeger SM, Kloxin AM et al (2012) Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 7(7), e39969

    Article  Google Scholar 

  49. Balestrini JL, Chaudhry S, Sarrazy V et al (2012) The mechanical memory of lung myofibroblasts. Integr Biol (Camb) 4(4):410–421

    Article  Google Scholar 

  50. Wilson CG, Stone JW, Fowlkes V et al (2011) Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microsc Microanal 17(4):555–562

    Article  Google Scholar 

  51. Wang S, Cukierman E, Swaim WD et al (1999) Extracellular matrix protein-induced changes in human salivary epithelial cell organization and proliferation on a model biological substratum. Biomaterials 20(11):1043–1049

    Article  Google Scholar 

  52. Zhang YH, Zhao CQ, Jiang LS et al (2011) Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells. Matrix Biol 30(2):135–144

    Article  Google Scholar 

  53. Vandenburgh HH (1982) Dynamic mechanical orientation of skeletal myofibers in vitro. Dev Biol 93(2):438–443

    Article  Google Scholar 

  54. Vandenburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203(4377):265–268

    Article  Google Scholar 

  55. Weber KT, Janicki JS, Shroff SG et al (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62(4):757–765

    Article  Google Scholar 

  56. Jalil JE, Doering CW, Janicki JS et al (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64(6):1041–1050

    Article  Google Scholar 

  57. Kollros PR, Bates SR, Mathews MB et al (1987) Cyclic AMP inhibits increased collagen production by cyclically stretched smooth muscle cells. Lab Invest 56(4):410–417

    Google Scholar 

  58. Butt RP, Bishop JE (1997) Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29(4):1141–1151

    Article  Google Scholar 

  59. Carver W, Nagpal ML, Nachtigal M et al (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69(1):116–122

    Article  Google Scholar 

  60. Lee AA, Delhaas T, Waldman LK et al (1996) An equibiaxial strain system for cultured cells. Am J Physiol 271(4 Pt 1):C1400–C1408

    Google Scholar 

  61. Wang Z, Kuang R, Xu Q et al (2015) Reaction of human fibroblasts from different sites to the mechanical stress. Zhongguo **u Fu Chong Jian Wai Ke Za Zhi 29(4):467–471

    Google Scholar 

  62. Auluck A, Mudera V, Hunt NP et al (2005) A three-dimensional in vitro model system to study the adaptation of craniofacial skeletal muscle following mechanostimulation. Eur J Oral Sci 113(3):218–224

    Article  Google Scholar 

  63. Birla RK, Huang YC, Dennis RG (2007) Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng 13(9):2239–2248

    Article  Google Scholar 

  64. Masoumi N, Howell MC, Johnson KL et al (2014) Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds. Proc Inst Mech Eng H 228(6):576–586

    Article  Google Scholar 

  65. Tokuyama E, Nagai Y, Takahashi K et al (2015) Mechanical stretch on human skin equivalents increases the epidermal thickness and develops the basement membrane. PLoS One 10(11), e0141989

    Article  Google Scholar 

  66. Imsirovic J, Derricks K, Buczek-Thomas JA et al (2013) A novel device to stretch multiple tissue samples with variable patterns: application for mRNA regulation in tissue-engineered constructs. Biomatter 3(3):pii: e24650

    Article  Google Scholar 

  67. Obi S, Yamamoto K, Ando J (2014) Effects of shear stress on endothelial progenitor cells. J Biomed Nanotechnol 10(10):2586–2597

    Article  Google Scholar 

  68. Dunn J, Simmons R, Thabet S et al (2015) The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int J Biochem Cell Biol 67:167–176

    Article  Google Scholar 

  69. Rodriguez I, Gonzalez M (2014) Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol 5:209

    Google Scholar 

  70. Sedmera D, Pexieder T, Rychterova V et al (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2):238–252

    Article  Google Scholar 

  71. Hove JR, Koster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177

    Article  Google Scholar 

  72. Tan H, Biechler S, Junor L et al (2013) Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. Dev Biol 374(2):345–356

    Article  Google Scholar 

  73. Egorova AD, Khedoe PP, Goumans MJ et al (2011) Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 108(9):1093–1101

    Article  Google Scholar 

  74. Misra S, Fu AA, Puggioni A et al (2008) Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. Am J Physiol Heart Circ Physiol 294(5):H2219–H2230

    Article  Google Scholar 

  75. Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148(1):85–119

    Article  Google Scholar 

  76. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  Google Scholar 

  77. Zeisberg EM, Potenta SE, Sugimoto H et al (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19(12):2282–2287

    Article  Google Scholar 

  78. Moonen JR, Lee ES, Schmidt M et al (2015) Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res 108(3):377–386

    Article  Google Scholar 

  79. Grabias BM, Konstantopoulos K (2014) The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 306(5):F473–F485

    Article  Google Scholar 

  80. Chao YH, Tsuang YH, Sun JS et al (2012) Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways. Connect Tissue Res 53(5):422–429

    Article  Google Scholar 

  81. Nogueira AV, Nokhbehsaim M, Eick S et al (2014) Biomechanical loading modulates proinflammatory and bone resorptive mediators in bacterial-stimulated PDL cells. Mediators Inflamm 2014:425421

    Google Scholar 

  82. Jacobs C, Walter C, Ziebart T et al (2014) Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig 18(3):901–908

    Article  Google Scholar 

  83. D’Angelo E, Koutsoukou A, Della Valle P et al (2008) Cytokine release, small airway injury, and parenchymal damage during mechanical ventilation in normal open-chest rats. J Appl Physiol (1985) 104(1):41–49

    Article  Google Scholar 

  84. Plataki M, Hubmayr RD (2010) The physical basis of ventilator-induced lung injury. Expert Rev Respir Med 4(3):373–385

    Article  Google Scholar 

  85. Li G, Luna C, Qiu J et al (2010) Modulation of inflammatory markers by miR-146a during replicative senescence in trabecular meshwork cells. Invest Ophthalmol Vis Sci 51(6):2976–2985

    Article  Google Scholar 

  86. Huang Y, Crawford M, Higuita-Castro N et al (2012) miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. FASEB J 26(8):3351–3364

    Article  Google Scholar 

  87. Hartupee J, Mann DL (2016) Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol 93:143–148

    Article  Google Scholar 

  88. Madjene LC, Pons M, Danelli L et al (2015) Mast cells in renal inflammation and fibrosis: lessons learnt from animal studies. Mol Immunol 63(1):86–93

    Article  Google Scholar 

  89. Overed-Sayer C, Rapley L, Mustelin T et al (2013) Are mast cells instrumental for fibrotic diseases? Front Pharmacol 4:174

    Google Scholar 

  90. Fowlkes V, Wilson CG, Carver W et al (2013) Mechanical loading promotes mast cell degranulation via RGD-integrin dependent pathways. J Biomech 46(4):788–795

    Article  Google Scholar 

  91. Komiyama H, Miyake K, Asai K et al (2014) Cyclical mechanical stretch enhances degranulation and IL-4 secretion in RBL-2H3 mast cells. Cell Biochem Funct 32(1):70–76

    Article  Google Scholar 

  92. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319

    Article  Google Scholar 

  93. Zhang H, Labouesse M (2012) Signalling through mechanical inputs: a coordinated process. J Cell Sci 125(Pt 13):3039–3049

    Article  Google Scholar 

  94. MacKenna DA, Dolfi F, Vuori K et al (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101(2):301–310

    Article  Google Scholar 

  95. Buck CA, Horwitz AF (1987) Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol 3:179–205

    Article  Google Scholar 

  96. Humphries MJ, Yasuda Y, Olden K et al (1988) The cell interaction sites of fibronectin in tumour metastasis. Ciba Found Symp 141:75–93

    Google Scholar 

  97. Atance J, Yost MJ, Carver W (2004) Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. J Cell Physiol 200(3):377–386

    Article  Google Scholar 

  98. Roca-Cusachs P, Iskratsch T, Sheetz MP (2012) Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J Cell Sci 125(Pt 13):3025–3038

    Article  Google Scholar 

  99. Zaidel-Bar R, Itzkovitz S, Ma’ayan A et al (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867

    Article  Google Scholar 

  100. Pasapera AM, Schneider IC, Rericha E et al (2010) Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188(6):877–890

    Article  Google Scholar 

  101. Ingber DE (1991) Control of capillary growth and differentiation by extracellular matrix. Use of a tensegrity (tensional integrity) mechanism for signal processing. Chest 99(3 Suppl):34S–40S

    Google Scholar 

  102. Ingber DE (1997) Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 10(2):49–55

    Google Scholar 

  103. Burridge K, Mangeat P (1984) An interaction between vinculin and talin. Nature 308(5961):744–746

    Article  Google Scholar 

  104. Critchley DR (2009) Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38:235–254

    Article  Google Scholar 

  105. Weiner TM, Liu ET, Craven RJ et al (1993) Expression of focal adhesion kinase gene and invasive cancer. Lancet 342(8878):1024–1025

    Article  Google Scholar 

  106. Chen HC, Appeddu PA, Isoda H et al (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271(42):26329–26334

    Article  Google Scholar 

  107. Michael KE, Dumbauld DW, Burns KL et al (2009) Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 20(9):2508–2519

    Article  Google Scholar 

  108. Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125(Pt 13):3061–3073

    Article  Google Scholar 

  109. Carter DR, Beaupre GS, Giori NJ et al (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res (355 Suppl):S41–S55

    Google Scholar 

  110. Zheng W, Christensen LP, Tomanek RJ (2008) Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295(2):H794–H800

    Article  Google Scholar 

  111. Lehoux S, Esposito B, Merval R et al (2005) Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111(5):643–649

    Article  Google Scholar 

  112. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  Google Scholar 

  113. Bishop JE, Butt R, Dawes K et al (1998) Mechanical load enhances the stimulatory effect of PDGF on pulmonary artery fibroblast procollagen synthesis. Chest 114(1 Suppl):25S

    Article  Google Scholar 

  114. Wipff PJ, Rifkin DB, Meister JJ et al (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323

    Article  Google Scholar 

  115. Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  Google Scholar 

  116. Goffin JM, Pittet P, Csucs G et al (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268

    Article  Google Scholar 

  117. Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87(8-9):601–615

    Article  Google Scholar 

  118. Sarrazy V, Koehler A, Chow ML et al (2014) Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovasc Res 102(3):407–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edie C. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carver, W., Esch, A.M., Fowlkes, V., Goldsmith, E.C. (2017). The Biomechanical Environment and Impact on Tissue Fibrosis. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_9

Download citation

Publish with us

Policies and ethics

Navigation