25 Years of FRS Experiments and New Horizons

  • Chapter
  • First Online:
New Horizons in Fundamental Physics

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 1174 Accesses

Abstract

Heavy-ion research and applications with the FRagment Separator FRS started with the inauguration experiment of the high-energy facilities at GSI 25 years ago. The FRS is primarily a powerful in-flight separator for short-lived nuclei created via projectile fragmentation and abrasion fission at energies up to 1 GeV/u. The ion-optical system of the FRS also represents a versatile magnetic spectrometer for precise momentum and angular measurements of ions up to a maximum magnetic rigidity of 18 Tm. High-resolution spectrometer experiments with exotic nuclei are a great challenge due to the large phase space of the fragments. Solutions are the use of dedicated ion-optical operating modes such as dispersion matching and isochronous conditions or methods based on reduction of the phase space by cooling, slowing down and energy bunching. Results of these spectrometer experiments belong to the high-lights of the research with the FRS and will be reported together with experiments planned with the next generation facility Super-FRS. Some historical remarks and motivations are included in this review. However, it is not the intension of this report to describe the complete scientific program covered with the FRS and planned with the Super-FRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Angert, C. Schmelzer, Kerntechnik 19(2), 57 (1977)

    Google Scholar 

  2. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  3. U. Mosel, W. Greiner, Z. Phys. 222, 261 (1969)

    Article  ADS  Google Scholar 

  4. H. Geissel et al., Nucl. Instr. Meth. B 70, 286 (1992)

    Google Scholar 

  5. H. Geissel et al., Nucl. Instr. Meth. B 204, 71 (2003)

    Google Scholar 

  6. G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)

    Article  ADS  Google Scholar 

  7. T.J.M. Symons et al., Phys. Rev. Lett. 42, 40 (1979)

    Article  ADS  Google Scholar 

  8. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B 160, 380 (1985)

    Google Scholar 

  9. K. Blasche, B. Franczak, in Proceedings of the 3rd European Particle Accelerator Conference (Berlin, 1992), p. 9

    Google Scholar 

  10. P. Kienle, Future accelerators and experimental facilities at GSI, Report GSI-84-18 (1984). ISSN:0171-4546

    Google Scholar 

  11. S. Marcowitz, L. Ratner, Rev. Sc. Instr. 33, 552 (1962)

    Article  ADS  Google Scholar 

  12. S.P. Ahlen, Rev. Mod. Phys. 52, 121 (1980)

    Article  ADS  Google Scholar 

  13. H. Geissel et al., Nucl. Instr. Meth. B 195, 3 (2002)

    Google Scholar 

  14. C. Scheidenberger et al., Phys. Rev. Lett. 73, 50 (1994)

    Article  ADS  Google Scholar 

  15. J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996)

    Article  ADS  Google Scholar 

  16. H. Geissel et al., Microsc. Microanal. 21(Supplement 4), 160 (2015)

    Article  Google Scholar 

  17. J. Eichler, T. Sthlker, Phys. Rep. 439, 1 (2007)

    Article  ADS  Google Scholar 

  18. H. Geissel et al., Nucl. Instr. Meth. B 317, 277 (2013)

    Article  ADS  Google Scholar 

  19. C. Scheidenberger et al., Phys. Rev. Lett. 77, 3987 (1996)

    Article  ADS  Google Scholar 

  20. H. Weick et al., Phys. Rev. Lett. 85, 2725 (2000)

    Article  ADS  Google Scholar 

  21. T. Schwab, Ph.D. thesis, JLU Gieen (1991). GSI Report GSI-91-10. H. Geissel, C. Scheidenberger, H. Weick to be published https://web-docs.gsi.de/~weick/atima/

  22. C. Scheidenberger et al., Nucl. Instr. Meth. B 142, 441 (1998)

    Google Scholar 

  23. T. Schwab, Ph.D. thesis, JLU Gieen (1991). GSI Report GSI-91-10. N. Iwasa et al., Nucl. Instr. Meth. B 126, 284 (1997); Nucl. Instr. Meth. B 269, 752 (2011)

    Google Scholar 

  24. G. Kraft, Progr. Part. Nucl. Phys. 45, 475 (2000); G. Kraft et al., in Proceedings of the EULIMA Workshop, Nice (1988)

    Google Scholar 

  25. W. Enghardt et al., Phys. Med. Biol. 37, 2127 (1992)

    Article  Google Scholar 

  26. W. Enghardt et al., Onkol. 175 (1999)

    Google Scholar 

  27. I. Tanihata et al., Scientific program of the super-FRS collaboration, GSI-Report 2014-4. doi:10.1520/GR-2014-4

  28. Y.L. Pivovarov et al., Nucl. Instr. Meth. B 119, 283 (1996)

    Google Scholar 

  29. E.I. Fiks et al., Nucl. Instr. Meth. B 314, 51 (2013)

    Google Scholar 

  30. T. Yamazaki et al., Z. Phys. A 355, 219 (1996)

    ADS  Google Scholar 

  31. K. Itahashi et al., Phys. Rev. C 62, 025202 (2000)

    Article  ADS  Google Scholar 

  32. K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)

    Article  ADS  Google Scholar 

  33. E. Friedman, G. Soff, J. Phys. G 11, L37 (1985)

    Article  ADS  Google Scholar 

  34. H. Toki, T. Yamazaki, Phys. Lett. B 213, 129 (1988)

    Article  ADS  Google Scholar 

  35. H. Toki, S. Hirenzaki, T. Yamazaki, R.S. Hayano, Nucl. Phys. A 501, 653 (1989)

    Article  ADS  Google Scholar 

  36. H. Gilg et al., Phys. Rev. C 62, 025201 (2000)

    Article  ADS  Google Scholar 

  37. T. Yamazaki et al., Phys. Rep. 514, 1 (2012)

    Article  ADS  Google Scholar 

  38. N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001)

    Article  ADS  Google Scholar 

  39. R.S. Hayano et al., Rev. Mod. Phys. 82, 2949 (2010)

    Article  ADS  Google Scholar 

  40. K. Itahashi et al., Prog. Theor. Phys. 128, 601 (2012)

    Article  ADS  Google Scholar 

  41. H. Nagahiro, Phys. Rev. C 87, 045201 (2013)

    Article  ADS  Google Scholar 

  42. A. Magel et al., Nucl. Instr. Meth. B 94, 548 (1994)

    Google Scholar 

  43. K.-H. Schmidt et al., Phys. Rev. C 87, 034601 (2013)

    Article  ADS  Google Scholar 

  44. M.V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006)

    Article  ADS  Google Scholar 

  45. K. Suemmerer, B. Blank, Phys. Rev. C 61, 034607 (2000); 86, 014601 (2012)

    Google Scholar 

  46. O.B. Tarasov, D. Bazin, Nucl. Phys. A 746, 411 (2004); Nucl. Instr. Meth. B 266, 4657 (2008)

    Google Scholar 

  47. M.V. Ricciardi et al., Phys. Rev. Lett. 90, 212302 (2003)

    Article  ADS  Google Scholar 

  48. D.J. Morrissey, Phys. Rev. C 39, 460 (1989)

    Article  ADS  Google Scholar 

  49. L. Shi, Phys. Rev. C 64, 034601 (2001)

    Article  ADS  Google Scholar 

  50. https://people.nscl.msu.edu/~thoennes/isotopes/

  51. M. Bernas et al., Phys. Lett. B 331, 19 (1994)

    Article  ADS  Google Scholar 

  52. M. Bernas et al., Nucl. Phys. A 616, 352 (1997)

    Article  ADS  Google Scholar 

  53. J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)

    Article  ADS  Google Scholar 

  54. T. Kurtukian-Nieto et al., Eur. Phys. J. A 50, 135 (2014)

    Article  ADS  Google Scholar 

  55. R. Schneider et al., Z. Phys. A 348, 241 (1994)

    Article  ADS  Google Scholar 

  56. C. Engelmann et al., Z. Phys. A 352, 351 (1995)

    Article  ADS  Google Scholar 

  57. S. Pietri et al., Nucl. Instr. Meth. B 261, 1079 (2007)

    Google Scholar 

  58. C.B. Hinke et al., Nature 486, 341 (2012)

    Article  ADS  Google Scholar 

  59. I. Hamamoto, H. Sagawa, Phys. Rev. C 48, R960 (1993)

    Article  ADS  Google Scholar 

  60. B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994)

    Article  ADS  Google Scholar 

  61. V.I. Goldansky, Nucl. Phys. 19, 482 (1960)

    Article  Google Scholar 

  62. M. Pfützner et al., Euro. Phys. J. A 14, 279 (2002)

    Article  ADS  Google Scholar 

  63. J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)

    Article  ADS  Google Scholar 

  64. K. Miernik et al., Phys. Rev. C 76, 041304(R) (2007)

    Article  ADS  Google Scholar 

  65. M. Ranjan et al., Europhys. Lett. 96, 52001 (2011)

    Article  ADS  Google Scholar 

  66. H. Geissel et al., Nucl. Instr. Meth. A 282, 247 (1989)

    Google Scholar 

  67. W.R. Plaß et al., Nucl. Instr. Meth. B 317, 457 (2013)

    Google Scholar 

  68. W.R. Plaß et al., Nucl. Instr. Meth. B 266, 4560 (2008)

    Google Scholar 

  69. T. Dickel et al., Nucl. Instr. Meth. A 777, 247 (1989)

    Google Scholar 

  70. W.R. Plaß et al., Phys. Scr. T 166, 014069 (2015)

    Article  ADS  Google Scholar 

  71. T. Dickel et al., Phys. Lett. B 744, 137 (2015)

    Article  ADS  Google Scholar 

  72. S. Purushothaman et al., Nucl. Instr. Meth. B 266, 4488 (2008)

    Google Scholar 

  73. G. Huber et al., Phys. Rev. C 18, 2342 (1978)

    Article  ADS  Google Scholar 

  74. T. Suzuki et al., Phys. Rev. Lett. 75, 3241 (1995)

    Article  ADS  Google Scholar 

  75. T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)

    Article  ADS  Google Scholar 

  76. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    Article  ADS  Google Scholar 

  77. P.G. Hansen, B.M. Sherrill, Nucl. Phys. A 693, 133 (2001)

    Article  ADS  Google Scholar 

  78. P.G. Hansen, J.A. Tostevin, Rev. Nucl. Part. Sci. 53, 219 (2003)

    Google Scholar 

  79. W. Schwab et al., Z. Phys. A 350, 283 (1995)

    Article  ADS  Google Scholar 

  80. H. Lenske, F. Hofmann, C.M. Keil, Rep. Prog. Nucl. Part. Phys. 46, 187 (2001)

    Article  ADS  Google Scholar 

  81. D. Cortina-Gil et al., Phys. Lett. B 529, 36 (2002)

    Article  ADS  Google Scholar 

  82. R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)

    Article  ADS  Google Scholar 

  83. G.D. Alkhazov et al., Phys. Rep. C 42, 89 (1978)

    Article  ADS  Google Scholar 

  84. P. Egelhof et al., Eur. Phys. J. A 15, 27 (2002)

    Article  ADS  Google Scholar 

  85. A.V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006)

    Article  ADS  Google Scholar 

  86. T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  87. H. Feldmeier et al., Phys. Rev. C 84, 054003 (2011)

    Article  ADS  Google Scholar 

  88. T. Neff, H. Feldmeier, Nucl. Phys. A 713, 311 (2003)

    Article  ADS  Google Scholar 

  89. T. Myo et al., Prog. Theor. Phys. 117, 257 (2007)

    Article  ADS  Google Scholar 

  90. H.J. Ong et al., Phys. Lett. B 725, 277 (2013)

    Article  ADS  Google Scholar 

  91. B. Franzke, Nucl. Instr. Meth. B 24–25, 18 (1987)

    Google Scholar 

  92. B. Franzke, H. Geissel, G. Münzenberg, Mass Spectro. Rev. 27, 428 (2008)

    Article  Google Scholar 

  93. L. Chen et al., Nucl. Phys. A 882, 71 (2012)

    Article  ADS  Google Scholar 

  94. T. Radon et al., Nucl. Phys. A 677, 75 (2000)

    Article  ADS  Google Scholar 

  95. Y.A. Litvinov et al., Nucl. Phys. A 756, 3 (2005)

    Article  ADS  Google Scholar 

  96. H. Irnich et al., Phys. Rev. Lett. 75, 4182 (1995)

    Article  ADS  Google Scholar 

  97. Y.A. Litvinov et al., Phys. Lett. B 573, 80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  98. T. Ohtsubo et al., Phys. Rev. Lett. 95, 052501 (2005)

    Article  ADS  Google Scholar 

  99. Z. Patyk et al., Phys. Rev. C 77, 014306 (2008)

    Article  ADS  Google Scholar 

  100. P. Kienle et al., Phys. Lett. B 726, 638 (2013)

    Article  ADS  Google Scholar 

  101. M. Diwisch, Doctoral thesis, Justus-Liebig University Gieen (2015)

    Google Scholar 

  102. J. Trötscher et al., Nucl. Instr. Meth. B 70, 455 (1992); N. Kuzminchuk-Feuerstein et al., Nucl. Instr. Meth. A (2016, in print)

    Google Scholar 

  103. H. Geissel et al., Hypn. Int. 173, 49 (2006)

    Article  ADS  Google Scholar 

  104. R. Knöbel et al., Phys. Lett. B 744, 288 (2016)

    Article  Google Scholar 

  105. B. Sun et al., Nucl. Phys. A 812, 1 (2008)

    Article  ADS  Google Scholar 

  106. H. Geissel et al., Microsc. Microanal. 21, 160 (2015)

    Article  Google Scholar 

  107. R. Knöbel et al., Eur. Phys. J. A (2016, in print)

    Google Scholar 

  108. J. Hubele et al., Z. Phys. A 340, 263 (1991)

    Article  ADS  Google Scholar 

  109. T. Blaich et al., Nucl. Instr. Meth. A 314, 136 (1992)

    Google Scholar 

  110. L. Chulkov et al., Phys. Rev. Lett. 79, 201 (1997)

    Article  ADS  Google Scholar 

  111. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)

    Google Scholar 

  112. J.S. Winfield et al., Nucl. Instr. Meth. A 704, 76 (2013)

    Google Scholar 

Download references

Acknowledgments

It is a great pleasure and our sincere wish to thank the experienced technical team of the FRS, in particular K.-H. Behr, A. Brünle, K. Burkhard and C. Karagiannis, for their competent and continuous hard work to prepare and run the experimental program with the FRS over the last 25 years. Furthermore, we would like to acknowledge the continuous support of all infrastructure and accelerator groups of GSI. Without this excellent technical work all scientific ideas and efforts would have not been successful. However, also the many valuable contributions of our scientific colleagues were essential for the experimental results reviewed in this article and are greatly appreciated. We are confident that also with the next-generation facility, the Super-FRS, many new discoveries in heavy ion research will be achieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Geissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geissel, H., Münzenberg, G., Scheidenberger, C. (2017). 25 Years of FRS Experiments and New Horizons. In: Schramm, S., Schäfer, M. (eds) New Horizons in Fundamental Physics. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44165-8_5

Download citation

Publish with us

Policies and ethics

Navigation