Multi-objective Optimization: Classical and Evolutionary Approaches

  • Chapter
  • First Online:
Recent Advances in Evolutionary Multi-objective Optimization

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 20))

  • 2945 Accesses

Abstract

Problems involving multiple conflicting objectives arise in most real world optimization problems. Evolutionary Algorithms (EAs) have gained a wide interest and success in solving problems of this nature for two main reasons: (1) EAs allow finding several members of the Pareto optimal set in a single run of the algorithm and (2) EAs are less susceptible to the shape of the Pareto front. Thus, Multi-objective EAs (MOEAs) have often been used to solve Multi-objective Problems (MOPs). This chapter aims to summarize the efforts of various researchers algorithmic processes for MOEAs in an attempt to provide a review of the use and the evolution of the field. Hence, some basic concepts and a summary of the main MOEAs are provided. We also propose a classification of the existing MOEAs in order to encourage researchers to continue sha** the field. Furthermore, we suggest a classification of the most popular performance indicators that have been used to evaluate the performance of MOEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We present the additive version of the \(\varepsilon \)-dominance. The multiplicative epsilon dominance is defined as follows: A solution u is said to epsilon-dominate a solution v (\(u \preceq _{\varepsilon } v\)) if and only if \(\forall m \in \left\{ 1,\ldots ,M \right\} : u_{m} \le v_{m} (1+ {\varepsilon } )\).

References

  1. Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16. Wiley, New York (2001)

    MATH  Google Scholar 

  2. Cohon, J.L.: Multiobjective programming and planning. Courier Corporation (2013)

    Google Scholar 

  3. Charnes, A., Cooper, W.W., Ferguson, R.O.: Optimal estimation of executive compensation by linear programming. Manag. Sci. 1(2), 138–151 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. Multiple Criteria Decision Making Theory and Application, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  5. Korhonen, P.J., Laakso, J.: A visual interactive method for solving the multiple criteria problem. Eur. J. Oper. Res. 24(2), 277–287 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jaszkiewicz, A., Słowiński, R.: The light beam search approach-an overview of methodology applications. Eur. J. Oper. Res. 113(2), 300–314 (1999)

    Article  MATH  Google Scholar 

  7. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, vol. 63. Citeseer (1999)

    Google Scholar 

  8. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science & Business Media (2012)

    Google Scholar 

  9. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 781–788. ACM (2007)

    Google Scholar 

  10. Korhonen, P., Laakso, J.: Solving generalized goal programming problems using a visual interactive approach. Eur. J. Oper. Res. 26(3), 355–363 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Korhonen, P., Yu, G.Y.: A reference direction approach to multiple objective quadratic-linear programming. Eur. J. Oper. Res. 102(3), 601–610 (1997)

    Article  MATH  Google Scholar 

  12. Korhonen, P.: The specification of a reference direction using the analytic hierarchy process. Math. Modell. 9(3), 361–368 (1987)

    Article  MathSciNet  Google Scholar 

  13. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100. L. Erlbaum Associates Inc. (1985)

    Google Scholar 

  14. Richardson, J.T., Palmer, M.R., Liepins, G.E., Hilliard, M.: Some guidelines for genetic algorithms with penalty functions. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 191–197. Morgan Kaufmann Publishers Inc. (1989)

    Google Scholar 

  15. Kursawe, F.: A variant of evolution strategies for vector optimization. Parallel Problem Solving from Nature, pp. 193–197. Springer, Berlin (1990)

    Google Scholar 

  16. Hajela, P., Lin, C.-Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4(2), 99–107 (1992)

    Article  Google Scholar 

  17. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In: ICGA, vol. 93, pp. 416–423, Citeseer (1993)

    Google Scholar 

  18. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, pp. 82–87, IEEE (1994)

    Google Scholar 

  19. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press (1975)

    Google Scholar 

  21. Bechikh, S., Chaabani, A., Said, L.B.: An efficient chemical reaction optimization algorithm for multiobjective optimization. IEEE Trans. Cybern. 45(10), 2051–2064 (2015)

    Article  Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Evol. Comput. Trans. IEEE 3(4), 257–271 (1999)

    Article  Google Scholar 

  23. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the Strength Pareto Evolutionary Algorithm (2001)

    Google Scholar 

  24. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Parallel Problem Solving from Nature PPSN VI, pp. 849–858. Springer, New York (2000)

    Google Scholar 

  25. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  26. Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 1. IEEE (1999)

    Google Scholar 

  27. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  28. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Parallel Problem Solving from Nature PPSN VI, pp. 839–848. Springer (2000)

    Google Scholar 

  29. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J., et al.: Pesa-ii: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001). Citeseer (2001)

    Google Scholar 

  30. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Parallel Problem Solving from Nature-PPSN VIII, pp. 832–842. Springer (2004)

    Google Scholar 

  31. Beume, N., Naujoks, B., Emmerich, M.: Sms-emoa: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  32. Azzouz, N., Bechikh, S., Said, L.B.: Steady state ibea assisted by mlp neural networks for expensive multi-objective optimization problems. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 581–588. ACM (2014)

    Google Scholar 

  33. Zhang, Q., Li, H.: Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  34. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  35. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02, vol. 1, pp. 825–830. IEEE (2002)

    Google Scholar 

  36. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  37. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1, pp. 204–211. IEEE (2000)

    Google Scholar 

  38. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the r2 indicator for many-objective optimization. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 679–686. ACM (2015)

    Google Scholar 

  39. Bechikh, S., Said, L.B., Ghédira, K.: Negotiating decision makers’ reference points for group preference-based evolutionary multi-objective optimization. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 377–382. IEEE (2011)

    Google Scholar 

  40. Bechikh, S., Said, L.B., Ghédira, K.: Group preference based evolutionary multi-objective optimization with nonequally important decision makers: Application to the portfolio selection problem. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 5(278–288), 71 (2013)

    Google Scholar 

  41. Kalboussi, S., Bechikh, S., Kessentini, M., Said, L.B.: Preference-based many-objective evolutionary testing generates harder test cases for autonomous agents. In: Search Based Software Engineering, pp. 245–250. Springer (2013)

    Google Scholar 

  42. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four-preference incorporation in evolutionary multiobjective optimization: A survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)

    Article  Google Scholar 

  43. Bechikh, S.: Incorporating decision makers preference information in evolutionary multi-objective optimization. PhD thesis, University of Tunis, ISG-Tunis, Tunisia (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Elarbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elarbi, M., Bechikh, S., Ben Said, L., Datta, R. (2017). Multi-objective Optimization: Classical and Evolutionary Approaches. In: Bechikh, S., Datta, R., Gupta, A. (eds) Recent Advances in Evolutionary Multi-objective Optimization. Adaptation, Learning, and Optimization, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-42978-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42978-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42977-9

  • Online ISBN: 978-3-319-42978-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation