Tentative Solutions for Indirect Optimization of Spacecraft Trajectories

  • Chapter
  • First Online:
Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

Abstract

In this chapter, the problem of improving convergence and finding suitable tentative solutions for the indirect optimization of spacecraft trajectories is discussed. The application of theory of optimal control to spacecraft trajectories transforms the optimal control problem into a multi-point boundary value problem, which is usually solved by means of an iterative procedure. The convergence radius of the problem may be small and convergence to the optimal solution is only obtained if the tentative solution, which is used to start the procedure, is sufficiently close to the optimum. The definition of a suitable solution is often the hardest part of the solution procedure for the optimization problem. Several cases and examples are presented in this chapter to illustrate the measures that could be adopted for the most common difficulties, which may be found during the optimization of space trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation. Optim. Control Appl. Methods 23, 171–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betts, T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  3. Bryson, E.A., Ho, Y.-C.: Applied Optimal Control. Hemisphere, New York (1975)

    Google Scholar 

  4. Burghes, D.N., Graham, A.: Introduction to Control Theory, Including Optimal Control. Wiley, New York (1980)

    MATH  Google Scholar 

  5. Caillau, J.B., Daoud, B., Gergaud, G.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114, 137–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casalino, L.: Singular arc during aerocruise. J. Guid. Control Dyn. 23, 118–123 (2000)

    Article  Google Scholar 

  7. Casalino, L., Colasurdo, G.: Optimization of variable-specific-impulse interplanetary trajectories. J. Guid. Control Dyn. 27, 678–684 (2004)

    Article  Google Scholar 

  8. Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Control Dyn. 22, 637–642 (1999)

    Article  Google Scholar 

  9. Cerf, M., Haberkorn, T., Trelat, E.: Continuation from a flat to a round Earth model in the coplanar orbit transfer problem. Optim. Control Appl. Methods 33, 654–675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colasurdo, G., Casalino, L.: Optimal Δ V -Earth-gravity-assist trajectories in the restricted three-body problem. Paper AAS 99-409 (1999)

    Google Scholar 

  11. Colasurdo, G., Casalino, L.: Indirect methods for the optimization of spacecraft trajectories. In: Fasano, G., Pinter, J.D. (eds.) Modeling and Optimization in Space Engineering, pp. 141–158. Springer, New York (2012)

    Chapter  MATH  Google Scholar 

  12. Colasurdo, G., Pastrone, D.: Indirect optimization method for impulsive transfer. Paper AIAA 94-3762, AIAA, Reston (1994)

    Google Scholar 

  13. Dadebo, S.A., McAuley, K.B., McLellan, P.J.: On the computation of optimal singular and bang-bang controls. Optim. Control Appl. Methods 19, 287–297 (1998)

    Article  MathSciNet  Google Scholar 

  14. Edelbaum, T.N.: Optimal Space Trajectories. Analytical Mechanics Associates, Gericho (1969)

    Book  Google Scholar 

  15. Gath, P.F., Well, K.H., Mehlem, K.: Initial guess generation for rocket ascent trajectory optimization using indirect methods. J. Spacecr. Rockets 39, 515–521 (2002)

    Article  Google Scholar 

  16. Graichen, K., Petit, N.: A continuation approach to state and adjoint calculation in optimal control applied to the reentry problem. In: 17th IFAC World Congress, Seoul (2008)

    Article  Google Scholar 

  17. Guelman, M.: Earth-to-moon transfer with a limited power engine. J. Guid. Control Dyn. 18, 1133–1138 (1995)

    Article  Google Scholar 

  18. Hull, D.G.: Optimal Control Theory for Applications. Springer, New York (2003)

    Book  MATH  Google Scholar 

  19. Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dyn. 35, 245–258 (2012)

    Article  Google Scholar 

  20. Kechichian, J.A.: Reformulation of Edelbaum’s low-thrust transfer problem using optimal control theory. J. Guid. Control Dyn. 20, 988–994 (1997)

    Article  MATH  Google Scholar 

  21. Kirk, D.E.: Optimal Control Theory: An introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  22. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  23. Marec, J.P.: Optimal Space Trajectories. Elsevier, Amsterdam (1979)

    MATH  Google Scholar 

  24. Melbourne, W.G., Sauer, C.G. Jr.: Optimum Earth-to-Mars roundtrip trajectories utilizing a low-thrust power-limited propulsion system. J. Astronaut. Sci. 13, 547–570 (1963)

    Google Scholar 

  25. Nah, R.S., Vadali, S.R., Braden, E.: Fuel-optimal, low-thrust, three-dimensional Earth-Mars trajectories. J. Guid. Control Dyn. 24, 1100–1107 (2001)

    Article  Google Scholar 

  26. Prussing, J.E.: Equations for optimal power-limited spacecraft trajectories. J. Guid. Control Dyn. 16, 391–393 (1993)

    Article  Google Scholar 

  27. Ranieri, C.L., Ocampo, C.A.: Optimization of roundtrip, time-constrained, finite burn trajectories via an indirect method. J. Guid. Control Dyn. 28, 306–314 (2005)

    Article  Google Scholar 

  28. Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dyn. 30, 460–472 (2007)

    Article  Google Scholar 

  29. Sentinella, M.R., Casalino, L.: Genetic algorithm and indirect method coupling for low-thrust trajectory optimization. Paper AIAA 2006-4468 (2006)

    Google Scholar 

  30. Shen, H.X., Casalino, L.: Indirect optimization of three-dimensional multiple-impulse Moon-to-Earth transfers. J Astronaut. Sci. 61, 255–274 (2014)

    Article  Google Scholar 

  31. Simeoni, F., Casalino, L., Zavoli, A., Colasurdo, G.: Indirect optimization of satellite deployment into a highly elliptic orbit. Int. J. Aerosp. Eng. 2012, Article ID 152683, 14 pp. (2012)

    Google Scholar 

  32. Simeoni, F., Casalino, L., Zavoli, A., Colasurdo, G.: Deployment of a two-spacecraft formation into a highly elliptic orbit with collision avoidance. Paper AIAA-2012-4740 (2012)

    Google Scholar 

  33. Zavoli, A., Simeoni, F., Casalino, L., Colasurdo, G.: Optimal cooperative deployment of a two-satellite formation into a highly elliptic orbit. Paper AAS 11-641 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Colasurdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colasurdo, G., Casalino, L. (2016). Tentative Solutions for Indirect Optimization of Spacecraft Trajectories. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_3

Download citation

Publish with us

Policies and ethics

Navigation