Flatness-Based Low-Thrust Trajectory Optimization for Spacecraft Proximity Operations

  • Chapter
  • First Online:
Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

  • 1648 Accesses

Abstract

This chapter presents a novel computational framework integrating the differential flatness theory and the analytic homotopic technique for the low-thrust trajectory optimization for spacecraft proximity operations. Based on the flatness property of relative motion equations, the trajectory optimization problem is transformed into the flat output space with all the differential constraints eliminated and the number of decision variables reduced. Then the mapped Chebyshev pseudospectral method is applied to parameterizing the profiles of flat outputs, whose high-order derivatives are enhanced by improving the differential matrix’s ill- conditioning. Furthermore, the analytic homotopic technique is introduced to improve the applicability to non-smooth trajectory optimization problems. Numerical simulation results show that the proposed framework scheme is feasible and effective for spacecraft proximity maneuvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chamseddine, A., Zhang, Y., Rabbath, C.A., Join, C., Theilliol, D.: Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 48, 2832–2848 (2012)

    Article  Google Scholar 

  2. Levine, J.: Analysis and Control of Nonlinear Systems. Springer, Berlin and Heidelberg (2009)

    Book  MATH  Google Scholar 

  3. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  4. de Ruiter, A.H., Damaren, C.J., Forbes, J.R.: Spacecraft Dynamics and Control: An Introduction. Wiley, West Sussex, UK (2013)

    Google Scholar 

  5. Faiz, N., Agrawal, S.K., Murray, R.M.: Trajectory planning of differentially flat systems with dynamics and inequalities. J. Guid. Control. Dyn. 24(2), 219–227 (2001)

    Article  Google Scholar 

  6. Morio, V., Cazaurang, F., Zolghadri, A., Vernis, P.: Onboard path planning for reusable launch vehicles application to the shuttle orbiter reentry mission. Int Rev Aerosp Eng 1(6), 492–503 (2008)

    Google Scholar 

  7. Louembet, C., Cazaurang, F., Zolghadri, A.: Motion planning for flat systems using positive B-splines: an LMI approach. Automatica 46(8), 1305–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qi, G., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desiderio, D., Lovera, M.: Flatness-based guidance for planetary landing. 2010 American control conference, Marriott Waterfront, Baltimore, MD, 2010, pp. 3642–3647.

    Google Scholar 

  10. Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49(8), 1410–1413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhuang, Y., Ma, G., Li, C., Huang, H.: Time-optimal trajectory planning for underactuated rigid spacecraft using differential flatness. J. Astronaut. 32(8), 1753–1761 (2011)

    Google Scholar 

  12. Kosloff, D., Tal-Ezer, H.: A modified Chebyshev pseudospectral method with an O(N-1) time step restriction. J. Comput. Phys. 104(2), 457–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control. Dyn. 25, 160–166 (2002)

    Article  Google Scholar 

  14. Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32(4), 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems—numerical results and statistical interpretation. Optim. Control Appl. Methods 23, 171–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control. Dyn. 35, 245–258 (2012)

    Article  Google Scholar 

  17. Li, J., **, X.: Fuel-optimal low-thrust reconfiguration of formation-flying satellites via homopotic approach. J. Guid. Control. Dyn. 35, 1709–1717 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-** Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, Lp., Cai, Ww., Zhu, Yw. (2016). Flatness-Based Low-Thrust Trajectory Optimization for Spacecraft Proximity Operations. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_18

Download citation

Publish with us

Policies and ethics

Navigation