Regression-Based Sensitivity Analysis and Robust Design

  • Chapter
  • First Online:
Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

Abstract

This paper presents the Regression-Based global Sensitivity Analysis method (RBSA). It is an approach for quantitative, variance-based, sensitivity analysis of mathematical models used for design purposes. The method is based on the subdivision of the global variance into its components, due to the design-factor contributions, using general polynomial regression models. The performance of the RBSA is compared to other methods commonly used in engineering for computing sensitivity, namely, the method of Sobol’, the Fourier amplitude sensitivity test, the method of Morris, and the standardized regression coefficients. It was found that RBSA, under certain circumstances, provides very accurate results with a significant reduction of the number of required model evaluations. A test case, using the mathematical models of two subsystems of a spacecraft, demonstrates how RBSA facilitates the discovery and understanding of the effects of the design choices on the performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model Softw. 22 (10), 1509–1518 (2007)

    Article  Google Scholar 

  2. Cardile, D., Ridolfi, G., Mooij, E., Chiesa, S., Ferrari, G.: A system of systems approach for the concurrent design of space missions. In: IAC-10.B5.2.3, 61st International Astronautical Congress. Prague, CZ (2010)

    Google Scholar 

  3. Cukier, R., Levine, H., Shuler, K.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 1 (26), 1–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Draper, N., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998)

    Book  MATH  Google Scholar 

  5. Helton, J.C., Davis, F.J.: Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Anal. 22 (3), 591–622 (2002)

    Article  Google Scholar 

  6. Iman, R., Conover, W.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 3 (B11), 311–334 (1982)

    Article  MATH  Google Scholar 

  7. Kuri, A., Cornell, J.: Response Surfaces. Design and Analyses. Marcel Dekker Inc., New York (1996). 2nd edn. Revised and Expanded

    Google Scholar 

  8. Morris, M.: Factorial sampling plans for preliminary computational experiments. Technometrics 33 (2), 161–174 (1991)

    Article  Google Scholar 

  9. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  10. Ridolfi, G., Mooij, E., Corpino, S.: A system engineering tool for the design of satellite subsystems. In: Proceedings of the AIAA Modelling and Simulation Technologies Conference, Chicago. AIAA 2009-6037 (2009)

    Google Scholar 

  11. Ridolfi, G., Mooij, E., Cardile, D., Corpino, S., Stesina, F.: Orthogonal-array based design methodology for complex, coupled space systems. In: IAC-10.B5.2.4, 61st International Astronautical Congress, Prague (2010)

    Google Scholar 

  12. Ridolfi, G., Mooij, E., Corpino, S.: A methodology for system-of-systems design in support of the engineering team. Acta Astronaut. (2011). doi:10.1016/j.actaastro.2011.11.016

    Article  Google Scholar 

  13. Ridolfi, G., Mooij, E., Chiesa, S.: A modelling framework for the concurrent design of complex space systems. In: Proceedings of the AIAA MST Conference Proceedings, Toronto AIAA 2010-7782 (2010)

    Google Scholar 

  14. Ridolfi, G., Mooij, E., Chiesa, S.: A parametric approach to the concurrent design of complex systems. In: ESA Workshop - SECESA, Lausanne, CH (2010)

    Google Scholar 

  15. Ridolfi, G., Mooij, E., Corpino, S.: Complex-systems design methodology for se collaborative environment. In: Systems Engineering. Theory and Applications (2012). ISBN:979-953-307-410-7

    Google Scholar 

  16. Saltelli, A., Tarantola, S., Chan, K.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41 (1), 39–56 (1999)

    Article  Google Scholar 

  17. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice. Wiley, Chichester (2004)

    MATH  Google Scholar 

  18. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  19. Simlab: Software package for uncertainty and sensitivity analysis. Technical Report Last downloaded May 2010, Joint Research Centre of the European Commission (2010). Downloadable for free at: http://simlab.jrc.ec.europa.eu

  20. Sobol’, I.: On the systematic search in a hypercube. SIAM J. Numer. Anal. 16 (5), 790–793 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sobol’, I.M.: Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    Google Scholar 

  22. Wertz, J., Larson, W.: Space Mission Analysis and Design, 3rd edn. Springer, New York (1999)

    Google Scholar 

  23. Williams, C.K.: Prediction with Gaussian processes: from linear regression to linear prediction and beyond. In: Learning in Graphical Models, pp. 599–612. MIT Press, Cambridge (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Mooij .

Editor information

Editors and Affiliations

Appendix: Communication and Power Subsystem

Appendix: Communication and Power Subsystem

In Table 9 we describe the settings of the discrete variables used for the analysis of the communication and power subsystem. Further, the analysis of the communication and power subsystems cannot be performed considering them as separate from the other subsystems of the satellite and irrespectively of the orbit that the satellite will undergo. Some boundary conditions need to be set. In Table 10, the settings of all the parameters that significantly influence the performances of the communication and power subsystems are presented.

Table 10 Communication system, settings of other factors influencing the performance

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ridolfi, G., Mooij, E. (2016). Regression-Based Sensitivity Analysis and Robust Design. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_12

Download citation

Publish with us

Policies and ethics

Navigation