Theory

  • Chapter
  • First Online:
Geoenergy Modeling I

Part of the book series: SpringerBriefs in Energy ((BRIESCMES))

  • 729 Accesses

Abstract

In this chapter we briefly glance at basic concepts of porous medium theory (Sect. 2.1.1) and thermal processes of multiphase media (Sect. 2.1.2). We will study the mathematical description of thermal processes in the context of continuum mechanics and numerical methods for solving the underlying governing equations (Sect. 2.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Within the context of the Theory of Mixtures the ideal mixture of all constituents of a multiphase medium is postulated. Consequently, the realistic modeling of the mutual interactions of the constituents is difficult.

  2. 2.

    A bit history of Fourier comes in the lecture.

  3. 3.

    Note: “Heat” can be even cold in case the temperature is lower than the ambient one;-).

References

  • J. Bear, Dynamics of Fluids in Porous Media (American Elsevier Publishing Company, New York, 1972)

    MATH  Google Scholar 

  • R.M. Bowen, Theory of Mixture, Continuum Physics, vol. III, ed. by A.C. Eringen (Academic, New York, 1976)

    Google Scholar 

  • R.M. Bowen, Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  • H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1959)

    MATH  Google Scholar 

  • R. de Boer, Theory of Porous Media (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  • R. de Boer, W. Ehlers, On the problem of fluid- and gas-filled elasto-plastic solids. Int. J. Sol. Struct. 22, 1231–1242 (1986)

    Article  MATH  Google Scholar 

  • H.-J. Diersch, FEFLOW - Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media (Springer, Berlin, 2014)

    Google Scholar 

  • W. Ehlers, J. Bluhm, Porous Media: Theory, Experiments and Numerical Applications (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  • U.-J. Goerke, S. Kaiser, A. Bucher, et al. A consistent mixed finite element formulation for hydro-mechanical processes in saturated porous media at large strains based on a generalized material description. Eur. J. Mech. A-Solids 32, 88–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Häfner, D. Sames, H.-D. Voigt, Wärme- und Stofftransport: Mathematische Methoden (Springer, Berlin, 1992)

    Book  Google Scholar 

  • R. Helmig, Multiphase Flow and Transport Processes in the Subsurface (Springer, Berlin, 1997)

    Book  Google Scholar 

  • O. Kolditz, Computational Methods in Environmental Fluid Mechanics. Graduate Text Book (Springer Science Publisher, Berlin, 2002)

    Book  MATH  Google Scholar 

  • O. Kolditz, U.-J. Görke, H. Shao, W. Wang, Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media. Lecture Notes in Computational Science and Engineering, vol. 86 (2012), pp. 1–404

    Article  Google Scholar 

  • R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (Wiley, New York, 1998)

    MATH  Google Scholar 

  • R.W. Lewis, P. Nithiarasu, K. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow (Wiley, New York, 2004)

    Book  Google Scholar 

  • P. Prevost, Mechanics of continuous porous media. Int. J. Eng. Sci 18, 787–800 (1980)

    Article  MATH  Google Scholar 

  • A.E. Scheidegger, General theory of dispersion in porous media. J. Geophys. Res. 66 (10), 3273–3278 (1961). doi:10.1029/JZ066i010p03273. ISSN:0148-0227

    Google Scholar 

  • C. Truesdell, R.A. Toupin, The Classical Field Theories. Handbuch der Physik, vol. III/1, ed. by S. Flügge (Springer, Berlin, 1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Böttcher, N., Watanabe, N., Görke, UJ., Kolditz, O. (2016). Theory. In: Geoenergy Modeling I. SpringerBriefs in Energy(). Springer, Cham. https://doi.org/10.1007/978-3-319-31335-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31335-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31333-7

  • Online ISBN: 978-3-319-31335-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation