Cellular Aging and Tumor Regulation

  • Chapter
  • First Online:
Cellular Ageing and Replicative Senescence

Part of the book series: Healthy Ageing and Longevity ((HAL))

  • 1402 Accesses

Abstract

Aging is the basis of most of the degenerative diseases in the elderly. These diseases can be defined as loss of function diseases. On the level of a cell, senescence can be one driving force of such diseases. In contrast, cancer is, on the one hand, associated with age as well, but can be seen as a gain of function disease. Cellular senescence can act to prevent cell proliferation and is believed to inhibit cancer growth. Interestingly, this tumor defense system can stimulate tumor formation at old age, if senescent cells start to accumulate. The connection between cellular senescence is described on the level of intracellular cell signaling as well as on the level of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Albright JW, Albright JF (1983) Age-associated impairment of murine natural killer activity. Proc Natl Acad Sci U S A 80(20):6371–6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ale-Agha N, Dyballa-Rukes N et al (2014) Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase – potential role in senescence and aging. Exp Gerontol 56:189–193

    Article  CAS  PubMed  Google Scholar 

  • Aspinall R (1999) Does the immune system of a mouse age faster than the immune system of a human? Bioessays 21(6):519–524

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Sedivy JM (2013) Probing the depths of cellular senescence. J Cell Biol 202(1):11–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beli E, Clinthorne JF et al (2011) Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev 132(10):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beli E, Duriancik DM et al (2014) Natural killer cell development and maturation in aged mice. Mech Ageing Dev 135:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boilan E, Winant V et al (2013) Role of p38MAPK and oxidative stress in copper-induced senescence. Age (Dordr) 35(6):2255–2271

    Article  CAS  Google Scholar 

  • Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35(3):317–329

    Article  CAS  PubMed  Google Scholar 

  • Buffa S, Pellicano M et al (2013) A novel B cell population revealed by a CD38/CD24 gating strategy: CD38(-)CD24 (-) B cells in centenarian offspring and elderly people. Age (Dordr) 35(5):2009–2024

    Article  CAS  Google Scholar 

  • Calkins GN (1908) The so-called rhythms of growth-energy in mouse cancer. J Exp Med 10(3):283–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JN, Gollapudi S et al (2010) Age-related alterations of gene expression patterns in human CD8+ T cells. Aging Cell 9(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Carnero A (2013) Markers of cellular senescence. Methods Mol Biol 965:63–81

    Article  CAS  PubMed  Google Scholar 

  • Chainiaux F, Magalhaes JP et al (2002) UVB-induced premature senescence of human diploid skin fibroblasts. Int J Biochem Cell Biol 34(11):1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Desprez PY et al (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003–3026

    Article  PubMed  Google Scholar 

  • Deeks SG, Verdin E et al (2012) Immunosenescence and HIV. Curr Opin Immunol 24(4):501–506

    Article  CAS  PubMed  Google Scholar 

  • Di Mitri D, Azevedo RI et al (2011) Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J Immunol 187(5):2093–2100

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont P, Burton M et al (2000) Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28(3):361–373

    Article  CAS  PubMed  Google Scholar 

  • Eckers A, Klotz LO (2009) Heavy metal ion-induced insulin-mimetic signaling. Redox Rep 14(4):141–146

    Article  CAS  PubMed  Google Scholar 

  • Eckers A, Reimann K et al (2009) Nickel and copper ion-induced stress signaling in human hepatoma cells: analysis of phosphoinositide 3′-kinase/Akt signaling. Biometals 22(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 18(9):450–454

    Article  CAS  PubMed  Google Scholar 

  • Fagnoni FF, Vescovini R et al (1996) Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88(4):501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang M, Roscoe F et al (2010) Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 207(11):2369–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fessler J, Ficjan A et al (2013) The impact of aging on regulatory T-cells. Front Immunol 4:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulop T, Larbi A et al (2013) Immunosenescence and cancer. Crit Rev Oncog 18(6):489–513

    Article  PubMed  Google Scholar 

  • Goronzy JJ, Li G et al (2012) Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 24(5):365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves LM, Guy HI et al (2000) Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403(6767):328–332

    Article  CAS  PubMed  Google Scholar 

  • Grulich AE, Vajdic CM (2015) The epidemiology of cancers in human immunodeficiency virus infection and after organ transplantation. Semin Oncol 42(2):247–257

    Article  PubMed  Google Scholar 

  • Guo Z, Tilburgs T et al (2014) Dysfunction of dendritic cells in aged C57BL/6 mice leads to failure of natural killer cell activation and of tumor eradication. Proc Natl Acad Sci U S A 111(39):14199–14204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann I, Klotz LO (2013) Arsenite-induced stress signaling: modulation of the phosphoinositide 3′-kinase/Akt/FoxO signaling cascade. Redox Biol 1(1):104–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann I, Petroll K et al (2014a) Insulin-like modulation of Akt/FoxO signaling by copper ions is independent of insulin receptor. Arch Biochem Biophys 558:42–50

    Article  CAS  PubMed  Google Scholar 

  • Hamann I, Petroll K et al (2014b) Acute and long-term effects of arsenite in HepG2 cells: modulation of insulin signaling. Biometals 27(2):317–332

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Hase S, Weinitschke K et al (2011) Monitoring peri-operative immune suppression in renal cancer patients. Oncol Rep 25(5):1455–1464

    CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Hazeldine J, Hampson P et al (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11(5):751–759

    Article  CAS  PubMed  Google Scholar 

  • Herndler-Brandstetter D, Landgraf K et al (2012) The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 91(2):197–205

    Article  PubMed  Google Scholar 

  • Itahana K, Dimri G et al (2001) Regulation of cellular senescence by p53. Eur J Biochem 268(10):2784–2791

    Article  CAS  PubMed  Google Scholar 

  • Johnson PL, Goronzy JJ et al (2014) A population biological approach to understanding the maintenance and loss of the T-cell repertoire during aging. Immunology 142(2):167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang K, Panzano VC et al (2012) Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481(7379):76–80

    Article  CAS  PubMed Central  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus V, Hartmann T et al (2010) 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys 496(2):93–100

    Article  CAS  PubMed  Google Scholar 

  • Klotz LO (2014) Oxidative stress, antioxidants, and chemoprevention: on the role of oxidant-induced signaling in cellular adaptation. In: Jacob C, Kirsch G, Slusarenko AJ, Winyard PG, Burkholz T (eds) Recent advances in redox active plant and microbial products. Springer, Dordrecht, pp 119–146

    Google Scholar 

  • Klotz LO, Holbrook NJ et al (2001) UVA and singlet oxygen as inducers of cutaneous signaling events. Curr Probl Dermatol 29:95–113

    Article  CAS  PubMed  Google Scholar 

  • Klotz LO, Hou X et al (2014) 1,4-Naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Molecules 19(9):14902–14918

    Article  PubMed  Google Scholar 

  • Krtolica A, Parrinello S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737

    Article  CAS  PubMed  Google Scholar 

  • Land H, Parada LF et al (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304(5927):596–602

    Article  CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19):3008–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang J et al (2013) beta-Asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression. Phytomedicine 20(6):512–520

    Article  CAS  PubMed  Google Scholar 

  • Melchheier I, von Montfort C et al (2005) Quinone-induced Cdc25A inhibition causes ERK-dependent connexin phosphorylation. Biochem Biophys Res Commun 327(4):1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22):3227–3239

    Article  CAS  PubMed  Google Scholar 

  • Mondal AM, Horikawa I et al (2013) p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest 123(12):5247–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Fang M et al (2015) The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Ralpha treatment. Aging Cell 14(2):180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardella C, Clohessy JG et al (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11(7):503–511

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, Sharpless NE (2013) Coming of age: molecular drivers of aging and therapeutic opportunities. J Clin Invest 123(3):946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtani N, Zebedee Z et al (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409(6823):1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Q, Wagner WM et al (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23(4):247–257

    Article  CAS  PubMed  Google Scholar 

  • Paradis V, Youssef N et al (2001) Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol 32(3):327–332

    Article  CAS  PubMed  Google Scholar 

  • Perillo NL, Walford RL et al (1989) Human T lymphocytes possess a limited in vitro life span. Exp Gerontol 24(3):177–187

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LM, Taylor JR et al (2014) Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun 5:5366

    Article  PubMed  PubMed Central  Google Scholar 

  • Rufer N, Migliaccio M et al (2001) Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 98(3):597–603

    Article  CAS  PubMed  Google Scholar 

  • Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14(6):617–628

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Yasuda H et al (2011) Acceleration of autoimmune diabetes in Rheb-congenic NOD mice with beta-cell-specific mTORC1 activation. Biochem Biophys Res Commun 408(2):306–311

    Article  CAS  PubMed  Google Scholar 

  • Schieke SM, von Montfort C et al (2004) Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic Res 38(7):729–737

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  • Shehata HM, Hoebe K et al (2015) The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14(2):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (2001) Parsing Ink4a/Arf: “pure” p16-null mice. Cell 106(5):531–534

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Yang J et al (2013) Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal 25(12):2540–2547

    Article  CAS  PubMed  Google Scholar 

  • Toussaint O, Medrano EE et al (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35(8):927–945

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Warn-Cramer BJ, Cottrell GT et al (1998) Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 273(15):9188–9196

    Article  CAS  PubMed  Google Scholar 

  • Weng NP, Palmer LD et al (1997) Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol Rev 160:43–54

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74(10):589–607

    Article  CAS  Google Scholar 

  • Wu D, Meydani SN (2008) Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol 84(4):900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Huang X et al (2012) Human regulatory T cells induce T-lymphocyte senescence. Blood 120(10):2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Ma C et al (2013) Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol 190(5):2403–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19(55):6503–6513

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Woods D et al (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12(19):2997–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Simm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simm, A., Seliger, B., Klotz, LO. (2016). Cellular Aging and Tumor Regulation. In: Rattan, S., Hayflick, L. (eds) Cellular Ageing and Replicative Senescence. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-26239-0_11

Download citation

Publish with us

Policies and ethics

Navigation