Identifying Distinguishing Factors in Predicting Brain Activities – An Inclusive Machine Learning Approach

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9250))

Included in the following conference series:

  • 2614 Accesses

Abstract

The human brain forms a large-scale, interconnected network when performing different activities. To compare networks extracted from different subjects, they are first converted into sparse graphs with similar densities to reveal topological differences. Graph analysis is then applied to the sparse graphs to extract global and local graph invariants for quantitative comparisons. However, many previous works not only studied global and local graph invariants separately, but also created only one single sparse graph for each subject, potentially excluding important factors in connectome analysis. In this work, we adopt a more inclusive approach: generating multiple graphs using different density thresholds for each subject; and describing each graph with both global and local graph invariants. A machine learning approach is then applied to analyze these comprehensive datasets. We show that our inclusive approach can help machine learning methods to automatically identify most discriminating factors in predicting brain activities with much higher accuracy than the previous exclusive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Human Connectome Project A neurobiologically grounded connectome. http://humanconnectome.org/about/project/neurobiologically-grounded-connectome.html (accessed April 15, 2015)

  2. Alpaydin, E.: Introduction to machine learning. MIT press (2014)

    Google Scholar 

  3. Barch, D.M., Burgess, G.C., Harms, M.P., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  4. Bogdanov, P., Dereli, N., Bassett, D.S., et al.: Learning about Learning: Human Brain Sub-Network Biomarkers in fMRI Data (2014). ar**v preprint ar**v:1407.5590

    Google Scholar 

  5. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Cao, M., Wang, J., Dai, Z., et al.: Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience 7, 76–93 (2014)

    Article  Google Scholar 

  7. Craddock, R.C., Tungaraza, R.L., Milham, M.P.: Connectomics and new approaches for analyzing human brain functional connectivity. GigaScience 4(1), 13 (2015)

    Article  Google Scholar 

  8. Destrieux, C., Fischl, B., Dale, A., et al.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  9. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    Article  Google Scholar 

  10. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  11. Hagmann, P.: From diffusion MRI to brain connectomics. Ph.D. Thesis, Institut de traitement des signaux (2005)

    Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J., et al.: The elements of statistical learning, vol. 2. Springer (2009)

    Google Scholar 

  13. Kulkarni, V., Pudipeddi, J.S., Akoglu, L., et al.: Sex differences in the human connectome. In: Brain and Health Informatics, pp. 82–91. Springer (2013)

    Google Scholar 

  14. Lyons, I.M., Beilock, S.L.: Mathematics anxiety: Separating the math from the anxiety. Cerebral Cortex: bhr289 (2011)

    Google Scholar 

  15. Marsland, S.: Machine learning: an algorithmic perspective. CRC press (2014)

    Google Scholar 

  16. Ommen, J.: Analytics of Human Brain Connectome Networks. Master Thesis (draft under preparation), University of St. Thomas (2015)

    Google Scholar 

  17. Reijneveld, J.C., Ponten, S.C., Berendse, H.W., et al.: The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology 118(11), 2317–2331 (2007)

    Article  Google Scholar 

  18. Robinson, E.C., Hammers, A., Ericsson, A., et al.: Identifying population differences in whole-brain structural networks: a machine learning approach. Neuroimage 50(3), 910–919 (2010)

    Article  Google Scholar 

  19. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  20. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS computational biology 1(4), e42 (2005)

    Article  Google Scholar 

  21. Wijk, V., Bernadette, C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PloS one 5(10), e13701 (2010)

    Article  Google Scholar 

  22. Wang, L., Yu, C., Chen, H., et al.: Dynamic functional reorganization of the motor execution network after stroke. Brain 133(4), 1224–1238 (2010)

    Article  Google Scholar 

  23. Zhou, J., Gennatas, E.D., Kramer, J.H., et al.: Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73(6), 1216–1227 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ommen, J., Lai, C. (2015). Identifying Distinguishing Factors in Predicting Brain Activities – An Inclusive Machine Learning Approach. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation