• 792 Accesses

Abstract

Oncogenesis is the process whereby normal cells are transformed into cancer cells. The multistep evolution is characterized by a progression of changes at the cellular, genetic, and epigenetic levels that ultimately reprogram a cell to undergo uncontrolled cell division, thereby forming a malignant mass (Hanahan and Weinberg, Cell 100:57–70, 2000 and Hanahan and Weinberg, Cell 144:646–674, 2011).

Carcinogenesis is caused by mutation of the genetic material of normal cells, which upsets the normal balance between proliferation and cell death. This disequilibrium results in uncontrolled cell division, and rapid proliferation of cells can lead to benign tumors and some of which may turn into malignant tumors. Malignant tumors can invade other organs and spread to distant locations as metastasis.

More than one single mutation is usually necessary to oncogenesis. In fact, a series of several mutations to certain classes of genes is usually required before a normal cell transforms into a cancer cell. For example, on average 15 “driver mutations” and 60 “passenger” mutations are found in colon cancers (Wood et al., Science 318:1108–1113, 2007).

Mutations in key genes that play vital roles in cell division and apoptosis as well as mutations in DNA repair genes will cause a cell to proliferate in an uncontrolled manner. Genetic changes can occur at many levels, from aneuploidy, gain or loss of entire chromosomes, to a mutation affecting a single DNA nucleotide resulting in silencing or activating the function of key genes.

There are two main categories of genes that are affected by these changes: (1) Oncogenes may be normal genes that are expressed at inappropriately high levels or altered genes that have novel properties. In either case, expression of these genes promotes the malignant phenotype of cancer cells, and (2) tumor suppressor genes are genes that inhibit cell division, survival, or other properties of normal cells. Tumor suppressor genes are often disabled by cancer-promoting genetic changes.

Large-scale alterations involve the deletion or gain of a portion of a chromosome. Genomic amplification occurs when a cell gains many copies (often 20 or more) of a small chromosomal region, usually containing one or more oncogenes and adjacent genetic material. Translocation occurs when two separate chromosomal regions become abnormally fused, often at a characteristic location. Small-scale mutations include point mutations, microdeletions, and microinsertions, which may occur in the promoter of a gene and affect its expression (as in TERT promoter Huang et al., Science 339:957–959, 2013) or, more frequently, may occur in the gene’s coding sequence and alter the function or stability of its protein product.

Oncogenesis requires the acquisition by the cell of essential physiological skills that reflects its genetic abnormalities. The study of these multiple genetic aberrations, which arise either at the chromosome level or at the nucleotidic level, is a crucial step for the integrative understanding of tumorigenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 53.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albertson DG, Collins C, McCormick F, Gray JW. (2003). Chromosome aberrations in solid tumors.Nat Genet. 34(4):369–376.

    Google Scholar 

  • Albertson DG, Snijders AM, Fridlyand J et al (2006) Genomic analysis of tumors by array comparative genomic hybridization: more is better. Cancer Res 66(7):3955–3956

    Article  CAS  PubMed  Google Scholar 

  • Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF mutant melanoma. Nature 467(7315):596–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook WD, McCaw BJ (2000) Accommodating haploinsufficient tumor suppressor genes in Knudson’s model. Oncogene 19(30):3434–3438

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  • Di Cristofano A, Kotsi P, Peng YF et al (1999) Impaired Fas response and autoimmunity in Pten+/− mice. Science 285(5436):2122–2125

    Article  PubMed  Google Scholar 

  • Ding D, Zhang Y, Yu H et al (2012) Genetic variation of XPA gene and risk of cancer: a systematic review and pooled analysis. Int J Cancer 131(2):488–496

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi B, Davidson RL, Weiss MC (1969) Malignancy of somatic cell hybrids. Nature 224(5226):1314–1316

    Article  CAS  PubMed  Google Scholar 

  • Epstein RJ (2013) The unpluggable in pursuit of the undruggable: tackling the dark matter of the cancer therapeutics universe. Front Oncol 3:304

    Article  PubMed Central  PubMed  Google Scholar 

  • Eser S, Schnieke A, Schneider G et al (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111(5):817–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Freed-Pastor WA, Prives C. (2012) Mutant p53: one name, many proteins. Genes Dev. Jun 15;26(12):1268–86.

    Google Scholar 

  • Fruhwald S, Herk E, Petnehazy T et al (2002) Sufentanil potentiates the inhibitory effect of epinephrine on intestinal motility. Intensive Care Med 28(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Gopalan A, Leversha MA, Satagopan JM et al (2009) TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 69(4):1400–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6(5):347–359

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • He M, Capelletti M, Nafa K et al (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57(5):837–841

    Google Scholar 

  • He M, Capelletti M, Nafa K, Yun CH, Arcila ME, Miller VA, Ginsberg MS, Zhao B, Kris MG, Eck MJ, Jänne PA, Ladanyi M, Oxnard GR. (2012) EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin Cancer Res 15;18(6):1790–1797.

    Google Scholar 

  • Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. Mar 1;57(5):837–41.

    Google Scholar 

  • Huang FW, Hodis E, Xu MJ et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue K, Zindy F, Randle DH et al (2001) Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 15(22):2934–2939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B. (1998) Landsca** the cancer terrain. Science. May 15;280(5366):1036–7

    Google Scholar 

  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. (1971) Proc Natl Acad Sci USA. Apr;68(4):820–3.

    Google Scholar 

  • Knudson AG. (1993). Antioncogenes and human cancer. Proc Natl Acad Sci USA. Dec 1;90(23):10914–21.

    Google Scholar 

  • Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152(6):1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Kris MG, Eck MJ, Jänne PA et al (2012) EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin Cancer Res 18(6):1790–1797

    Article  PubMed Central  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649

    Article  CAS  PubMed  Google Scholar 

  • Linehan WM, Pinto PA, Srinivasan R et al (2007) Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapeutics. Clin Cancer Res 13(2 Pt 2):671s–679s

    Article  CAS  PubMed  Google Scholar 

  • Macleod K (2000) Tumor suppressor genes. Curr Opin Genet Dev 10(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109

    CAS  PubMed  Google Scholar 

  • Ott G, Rosenwald A, Campo E (2013) Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 122(24):3884–3891

    Article  CAS  PubMed  Google Scholar 

  • Parsons MT, Buchanan DD, Thompson B et al (2012) Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 49(3):151–157

    Article  CAS  PubMed  Google Scholar 

  • Quon KC, Berns A (2001) Haplo-insufficiency? Let me count the ways. Genes Dev 15(22):2917–2921

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluh J, Wang X, Hahn WC (2014) Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci 35(2):103–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rous P, Robertson OH (1917) The normal fate of erythrocytes: I. the findings in healthy animals. J Exp Med 25(5):651–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro M, Melillo RM, Carlomagno F et al (2002) Molecular mechanisms of RET activation in human cancer. Ann N Y Acad Sci 963:116–21

    Article  CAS  PubMed  Google Scholar 

  • Sarraf P, Mueller E, Smith WM et al (1999) Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 3(6):799–804

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Wiman KG (2015) TP53: an oncogene in disguise. Cell Death Differ. doi:10.1038/cdd.2015.53

    PubMed Central  PubMed  Google Scholar 

  • Stambolic V, Suzuki A, de la Pompa JL et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM et al (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–173

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M et al (1996) Connexin genes and cell growth control. Arch Toxicol Suppl 18:105–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang CZ, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27(23):2513–2530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JJ, Santarius T, Wu X, Tsong J, Guha A, Wu JK, Hudson TJ, Black PM. (1998) Screening for loss of heterozygosity and microsatellite instability in oligodendrogliomas. Genes Chromosomes Cancer. Mar;21(3):207–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Pierron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pierron, G. (2015). Basis for Molecular Genetics in Cancer. In: Le Tourneau, C., Kamal, M. (eds) Pan-cancer Integrative Molecular Portrait Towards a New Paradigm in Precision Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-22189-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22189-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22188-5

  • Online ISBN: 978-3-319-22189-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation