Experimental Study of the Richtmyer-Meshkov Instability Induced by Cylindrical Converging Shock Waves

  • Conference paper
29th International Symposium on Shock Waves 2 (ISSW 2013)

Included in the following conference series:

  • 1548 Accesses

Abstract

The Richtmyer-Meshkov (RM) instability induced by converging shock waves becomes more and more attractive because of its physical applications in shock-wave lithotripsy, inertial confinement fusion, turbulent mixing in scramjet and collapse in supernova.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22, 878–886 (1951)

    Article  ADS  Google Scholar 

  2. Takayama, K., Kleine, H., Gronig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exps. Fluids 5, 315–322 (1987)

    Article  ADS  Google Scholar 

  3. Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. In: Brun, R., Dumitrescu, L.Z. (eds.) Shock Waves at Marseille IV, pp. 99–104. Springer (1995)

    Google Scholar 

  4. Hosseini, S.H.R., Onodera, O., Takayama, K.: Characteristics of an annular vertical diaphragmless shock tube. Shock Waves 10, 151–158 (2000)

    Article  ADS  Google Scholar 

  5. Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-waves. J. Fluid Mech. 309, 301–319 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Apazidis, N., Lesser, M.B., Tillmark, N., Johansson, B.: An experimental study of converging polygonal shock waves. Shock Waves 12, 39–58 (2002)

    Article  ADS  Google Scholar 

  7. Glass, I.I.: Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes. Prog. Aerospace Sci. 13, 223–291 (1972)

    Article  ADS  Google Scholar 

  8. Saito, T., Glass, I.I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)

    Article  ADS  Google Scholar 

  9. Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2005)

    Article  Google Scholar 

  10. Hosseini, S.H.R., Takayama, K.: Implosion of a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)

    Article  ADS  MATH  Google Scholar 

  11. Zhai, Z.G., Liu, C.L., Qin, F.H., Yang, J.M., Luo, X.S.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)

    Article  Google Scholar 

  12. Zhai, Z.G., Si, T., Luo, X.S., Yang, J.M., Liu, C.L., Tan, D.W., Zou, L.Y.: Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids 24, 026101 (2012)

    Article  Google Scholar 

  13. Si, T., Zhai, Z., Luo, X., Yang, J.: Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves. In: Kontis, K. (ed.) 28th International Symposium on Shock Waves, vol. 94, pp. 345–350. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Ranjan, D., Oakley, J., Bonazza, R.: Shock-Bubble Interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Si, T., Zhai, Z.G., Luo, X.S., Yang, J.M.: Experimental studies of reshocked spherical gas interfaces. Phys. Fluids 24, 054101 (2012)

    Article  ADS  Google Scholar 

  16. Zhai, Z.G., Si, T., Luo, X.S., Yang, J.M.: On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104 (2011)

    Article  Google Scholar 

  17. Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239–2247 (1993)

    Article  ADS  Google Scholar 

  18. Tomkins, C.D., Kumar, S., Orlicz, G.C., Prestridge, K.P.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Si, T., Zhai, Z., Luo, X., Yang, J. (2015). Experimental Study of the Richtmyer-Meshkov Instability Induced by Cylindrical Converging Shock Waves. In: Bonazza, R., Ranjan, D. (eds) 29th International Symposium on Shock Waves 2. ISSW 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-16838-8_38

Download citation

Publish with us

Policies and ethics

Navigation