Dispersion–Corrected, Operationally Normalized Stabilization Diagrams for Robust Structural Identification

  • Conference paper
Model Validation and Uncertainty Quantification, Volume 3

Abstract

This study aims at incorporating a certain degree of formalization to stabilization diagrams by integrating two additional features: the former introduces a new quantity, the modal dispersion metric, which expresses a certain part of the total stochastic vibration energy, and it is attributed to each vibration mode. The latter implements a polynomial chaos expansion framework for quantifying the effect of the operational conditions into the modal dispersion index. By combining these two features, a vibration mode is deemed as a structural one when it appears stabilized, i.e., comes with a high modal dispersion index and is operationally normalized. The proposed method is characterized by global applicability, thus also serving as a common measure of effectiveness among diverse parametric identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DA:

Dispersion analysis

DOF:

Degrees–of–freedom

ERA:

Eigensystem realization algorithm

N/S:

Noisetosignal

LHS:

Latin hypercube sampling

LTI:

Linear time–invariant

MDM:

Modal dispersion metric

nMDM:

Normalized modal dispersion metric

PCE:

Polynomial chaos expansion

PDF:

Probability density function

SD(s):

Stabilization diagram(s)

References

  1. Reynders E (2012) System Identification methods for (Operational) modal analysis: review and comparison. Arch Comput Meth Eng. 19(1):51–124

    Article  MathSciNet  Google Scholar 

  2. Antonacci E, De Stefano A, Gattulli V, Lepidi M, Matta E (2012) Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure. Struct Control Health Monit 19(5):579–608

    Article  Google Scholar 

  3. Bayraktar A, Altunişik AC, Sevim B, Türker T (2011) Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing. J Vib Control 17(1):129–149

    Article  Google Scholar 

  4. Lau J, Lanslots J, Peeters B, Van der Auweraer H (2007) Automatic modal analysis: reality or myth? In: Proceedings of the 25th international modal analysis conference, IMAC-XXV, Orlando

    Google Scholar 

  5. Giraldo D, Caicedo JM, Song W, Mogan B, Dyke SJ (2009) Modal identification through ambient vibration: A comparative study. In: Proceedings of the 24th International modal analysis conference, IMAC-XXIV, St Louis

    Google Scholar 

  6. Van Der Auweraer H, Peeters B (2004) Discriminating physical poles from mathematical poles in high order systems: Use and automation of the stabilization diagram. In: Proceedings of the 21st IEEE instrumentation and measurement technology conference, Como

    Google Scholar 

  7. Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. JGuid Control Dyn 8(5):620–627

    Article  MATH  Google Scholar 

  8. Florakis A, Fassois SD, Hemez FM (2001) MIMO LMS-ARMAX identification of vibrating structures-Part II: A critical assessment. Mech Syst Sig Process 15(4):737–758

    Article  Google Scholar 

  9. Fassois SD (2001) MIMO LMS-ARMAX identification of vibrating structures-Part I: The method. Mech Syst Sig Process 15(4):723–735

    Article  Google Scholar 

  10. Reynders E, De Roeck G (2008) Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech Syst Sig Process 22(3):617–637

    Article  Google Scholar 

  11. Goethals I, De Moor B (2002) Model reduction and energy analysis as a tool to detect spurious modes. In: Proceedings of the 2002 International conference on noise and vibration engineering, ISMA, Leuven, Belgium

    Google Scholar 

  12. Dertimanis VK (2013) On the use of dispersion analysis for model assessment in structural identification. J Vib Control 19(15):2270–2284

    Article  MathSciNet  Google Scholar 

  13. Dertimanis VK Koulocheris DV (2011) VAR based state-space structures: realization, statistics and spectral analysis. Lecture Notes in Electrical Engineering, vol 85. Springer, New york, pp 301–315

    Google Scholar 

  14. Kullaa J (2011) Vibration-based structural health monitoring under variable environmental or operational conditions. CISM courses and lectures, chapter 4, vol. 520. Springer, New York, pp 107–181

    Google Scholar 

  15. Peeters B, Roeck GD (2001) One-year monitoring of the z24-bridge: environmental effects versus damage events. Earthq Eng Struct Dyn 30(2):149–171

    Article  Google Scholar 

  16. Dertimanis VK, Chatzi EN (2014) Dispersion–corrected stabilization diagrams for model order assessment in structural identification. In: 7th European workshop on structural health monitoring 2012, EWSHM 2012, Nantes

    Google Scholar 

  17. Verhaegen M (1994) Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30(1):61–74

    Article  MATH  MathSciNet  Google Scholar 

  18. Fadali MS (2009) Digital control engineering: analysis and design. Academic Press, Massachusetts

    Google Scholar 

  19. Meyer CD (2000) Matrix analysis and applied linear algebra. Society for industrial and applied mathematics, Philadelphia, USA

    Book  Google Scholar 

  20. Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Prob Eng Mech 25(2):183–197

    Article  Google Scholar 

  21. **u D, Karniadakis G (2002) The wiener-askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis K. Dertimanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Dertimanis, V.K., Spiridonakos, M.D., Chatzi, E.N. (2015). Dispersion–Corrected, Operationally Normalized Stabilization Diagrams for Robust Structural Identification. In: Atamturktur, H., Moaveni, B., Papadimitriou, C., Schoenherr, T. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15224-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15224-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15223-3

  • Online ISBN: 978-3-319-15224-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation