Moving Objects Tracking on the Unit Sphere Using a Multiple-Camera System on a Mobile Robot

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 13

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 302))

  • 4631 Accesses

Abstract

Detection and tracking of moving objects with camera systems mounted on a mobile robot presents a formidable problem since the ego-motion of the robot and the moving objects jointly form a challengingly discernible motion in the image. In this paper, we are concerned with multiple-camera systems, namely the Ladybug\(^{\textregistered }2\) camera, whose perspective images were used to detect motion and subsequently perform the tracking of multiple objects on the sphere. This enabled us to account for the continuity of the scene which is achieved by the sensor in an image stitching process on the sphere. The objects are tracked on the sphere with a Bayesian filter based on the von Mises–Fisher distribution and the data association is achieved by the global nearest neighbor method, for which the distance matrix is constructed by deriving the Rényi \(\alpha \)-divergence for the von Mises–Fisher distribution. The prospects of the method are tested on a synthetic and real-world data experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 406.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. E. Palmer, Vision science : photons to phenomenology.   Cambridge, Mass.: MIT Press, 1999, stephen E. Palmer.; "A Bradford book."; Bibliography: Includes bibliographical references (p. [737]-769) and indexes.

    Google Scholar 

  2. B. Jung and G. Sukhatme, “Real-time motion tracking from a mobile robot,” International Journal of Social Robotics, vol. 2, no. 1, pp. 63–78, 2009.

    Article  Google Scholar 

  3. E. Einhorn, M. Filzhuth, C. Schröter, and H.-M. Gross, “Monocular detection and estimation of moving obstacles for robot navigation,” in European Conference on Mobile Robots (ECMR), 2011, pp. 121–126.

    Google Scholar 

  4. A. Kundu, K. M. Krishna, and C. V. Jawahar, “Realtime motion segmentation based multibody visual SLAM,” in Indian Conference on Computer Vision, Graphics and Image Processing -ICVGIP ’10, 2010, pp. 251–258.

    Google Scholar 

  5. K. E. Ozden, K. Schindler, and L. Van Gool, “Multibody structure-from-motion in practice.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1134–1141, Jun. 2010.

    Article  Google Scholar 

  6. A. A. Mekonnen, C. Briand, F. Lerasle, and A. Herbulot, “Fast HOG based person detection devoted to a mobile robot with a spherical camera,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nov. 2013, pp. 631–637.

    Google Scholar 

  7. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems.   Artech House Publishers, 1999.

    Google Scholar 

  8. Y. Bar-Shalom and E. Tse, “Sonar tracking of multiple targets using joint probabilistic data association filter,” Automatica, vol. 11, pp. 451–460, 1975.

    Article  MATH  Google Scholar 

  9. R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1152–1178, Oct. 2003.

    Article  Google Scholar 

  10. B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp. 4091–4104, 2006.

    Article  Google Scholar 

  11. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision (darpa),” in Proceedings of the 1981 DARPA Image Understanding Workshop, April 1981, pp. 121–130.

    Google Scholar 

  12. C. Tomasi and T. Kanade, “Detection and tracking of point features,” International Journal of Computer Vision, Tech. Rep., 1991.

    Google Scholar 

  13. F. Lu and E. Milios, “Robot pose estimation in unknown environments by matching 2d range scans,” J. Intell. Robotics Syst., vol. 18, no. 3, pp. 249–275, Mar. 1997.

    Article  Google Scholar 

  14. N. I. Fisher, T. Lewis, and B. J. J. Embleton, Statistical Analysis of Spherical Data.   Cambridge University Press, 1993.

    Google Scholar 

  15. K. V. Mardia and P. E. Jupp, Directional Statistics.   New York: Wiley, 1999.

    Google Scholar 

  16. S. R. Jammalamadaka and A. Sengupta, Topics in Circular Statistics.   World Scientific, 2001.

    Google Scholar 

  17. A. Chiuso and G. Picci, “Visual tracking of points as estimation on the unit sphere,” The Confluence of Vision and Control, Lecture Notes in Control and Information Sciences, vol. 237, pp. 90–105, 1998.

    Article  Google Scholar 

  18. I. Marković, F. Chaumette, and I. Petrović, “Moving object detection, tracking and following using an omnidirectional camera on a mobile robot,” in International Conference on Robotics and Automation (ICRA), 2014.

    Google Scholar 

  19. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.   The MIT Press, 2006.

    Google Scholar 

  20. W. Jakob, “Numerically stable sampling of the von Mises-Fisher distribution on \(S^2\) (and other tricks),” Interactive Geometry Lab, ETH Zürich, Tech. Rep., 2012.

    Google Scholar 

  21. T. Bailey, B. Upcroft, and H. Durrant-Whyte, “Validation Gating for Non-Linear Validation gating for non-linear non-Gaussian target tracking,” in International Conference on Information Fusion, 2006, pp. 1–6.

    Google Scholar 

  22. A. Rényi, “On Measures of Entropy and Information,” in Proc. Fourth Berkeley Symp. Math. Stat. and Probability.   Univ. of California Press, 1961, pp. 547–561.

    Google Scholar 

  23. M. Bukal, I. Marković, and I. Petrović, “Composite distance based approach to von Mises mixture reduction,” Accepted for publication in Information Fusion, 2014.

    Google Scholar 

  24. L. M. Bregman, “The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming,” USSR Computational Math. and Mathematical Physics, vol. 7, no. 3, pp. 200–217, 1967.

    Article  Google Scholar 

  25. F. Nielsen, “Chernoff information of exponential families,” CoRR - Computing Research Repository, vol. 1102.2684, 2011.

    Google Scholar 

  26. H. W. Kuhn, “The Hungarian method for the assignement problem,” Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

    Article  MathSciNet  Google Scholar 

  27. J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.

    Article  Google Scholar 

  29. K. Panta, D. E. Clark, and B.-N. Vo, “Data association and track management for the Gaussian mixture probability hypothesis density filter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3, pp. 1003–1016, 2009.

    Article  Google Scholar 

  30. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” IEEE Int. Conf. on Robotics and Automation (ICRA), Workshop on Open Source, 2009.

    Google Scholar 

  31. G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software Tools, 2000.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by European Community’s Seventh Framework Programme under grant agreement no. 285939 (ACROSS) and research project VISTA (EuropeAid/131920/M /ACT/HR). The authors would like to thank Mario Bukal, PhD for his insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Ćesić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ćesić, J., Marković, I., Petrović, I. (2016). Moving Objects Tracking on the Unit Sphere Using a Multiple-Camera System on a Mobile Robot. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation