Pattern Formation by Spatially Organized Approximate Majority Reactions

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

Pattern formation is a topic of great interest in biology and nanotechnology. In this paper we investigate a system of spatially-organized reactions inspired by a well-known distributed algorithm for approximate majority voting, and demonstrate that this system can lead to pattern formation from a randomly initialized starting state. We also show that the approximate majority reaction scheme can preserve an existing pattern in the face of noise, and that exerting control over reaction rates can influence the generated pattern. This work has potential applications in the rational design of pattern-forming systems in DNA nanotechnology and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237(641), 37–72 (1952)

    Article  Google Scholar 

  2. Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nature Chemistry 5, 1000–1005 (2013)

    Article  Google Scholar 

  3. Padirac, A., Fujii, T., Estévez-Torres, A., Rondelez, Y.: Spatial waves in synthetic biochemical networks. Journal of the American Chemical Society 135(39), 14586–14592 (2013)

    Article  Google Scholar 

  4. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distributed Computing 21(2), 87–102 (2008)

    Article  MATH  Google Scholar 

  5. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society Interface 9(72), 1470–1485 (2012)

    Article  Google Scholar 

  6. Lakin, M.R., Phillips, A., Stefanovic, D.: Modular verification of DNA strand displacement networks via serializability analysis. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 133–146. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8, 755–762 (2013)

    Article  Google Scholar 

  8. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Scientific Reports 2, 656 (2012)

    Article  Google Scholar 

  9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  10. Doursat, R., Sayama, H., Michel, O.: A review of morphogenetic engineering. Natural Computing 12(4), 517–535 (2013)

    Article  MathSciNet  Google Scholar 

  11. Li, H., Carter, J.D., LaBean, T.H.: Nanofabrication by DNA self-assembly. Materials Today 12(5), 24–32 (2009)

    Article  Google Scholar 

  12. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Reviews of Modern Physics 65(3), 851–1112 (1993)

    Article  Google Scholar 

  13. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31(1), 253–258 (1925)

    Article  Google Scholar 

  14. Antal, T., Droz, M., Magnin, J., Pekalski, A., Rácz, Z.: Formation of Liesegang patterns: Simulations using a kinetic Ising model. Journal of Chemical Physics 114(8), 3770–3775 (2001)

    Article  Google Scholar 

  15. Murray, J.D.: A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology 88, 161–199 (1981)

    Article  MathSciNet  Google Scholar 

  16. Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters 64, 2953–2956 (1990)

    Article  Google Scholar 

  17. Lotka, A.J.: Undamped oscillations derived from the law of mass action. Journal of the American Chemical Society 42, 1595–1599 (1920)

    Article  Google Scholar 

  18. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

  19. Degn, H.: Oscillating chemical reactions in homogeneous phase. Journal of Chemical Education 49, 302–307 (1972)

    Article  Google Scholar 

  20. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–635 (1972)

    Article  Google Scholar 

  21. Field, R.J., Noyes, R.M.: Explanation of spatial band propagation in the Belousov reaction. Nature (London) 237, 390–392 (1972)

    Article  Google Scholar 

  22. Winfree, A.T.: Varieties of spiral wave behaviour: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303–334 (1991)

    Article  MathSciNet  Google Scholar 

  23. Zhao, Z., Liu, Y., Yan, H.: Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Letters 11, 2997–3002 (2011)

    Article  Google Scholar 

  24. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. Journal of the American Chemical Society 129, 14875–14879 (2007)

    Article  Google Scholar 

  25. Yashin, R., Rudchenko, S., Stojanovic, M.: Networking particles over distance using oligonucleotide-based devices. Journal of the American Chemical Society 129, 15581–15584 (2007)

    Article  Google Scholar 

  26. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3(2), 103–113 (2011)

    Article  Google Scholar 

  27. Weitz, M., Mückl, A., Kapsner, K., Berg, R., Meyer, A., Simmel, F.C.: Communication and computation by bacteria compartmentalized within microemulsion droplets. Journal of the American Chemical Society 136(1), 72–75 (2014)

    Article  Google Scholar 

  28. Silva-Rocha, R., de Lorenzo, V.: Engineering multicellular logic in bacteria with metabolic wires. ACS Synthetic Biology 3(4), 204–209 (2014)

    Article  Google Scholar 

  29. Bacchus, W., Lang, M., El-Baba, M.D., Weber, W., Stelling, J., Fussenegger, M.: Synthetic two-way communication between mammalian cells. Nature Biotechnology 30(10), 991–998 (2012)

    Article  Google Scholar 

  30. Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J.: A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010)

    Article  Google Scholar 

  31. Rudge, T.J., Steiner, P.J., Phillips, A., Haseloff, J.: Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology 1, 345–352 (2012)

    Article  Google Scholar 

  32. Dalchau, N., Smith, M.J., Martin, S., Brown, J.R., Emmott, S., Phillips, A.: Towards the rational design of synthetic cells with prescribed population dynamics. Journal of the Royal Society Interface 9(76), 2883–2898 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Lakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lakin, M.R., Stefanovic, D. (2014). Pattern Formation by Spatially Organized Approximate Majority Reactions. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation