A More Efficient AES Threshold Implementation

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2014 (AFRICACRYPT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8469))

Included in the following conference series:

Abstract

Threshold Implementations provide provable security against first-order power analysis attacks for hardware and software implementations. Like masking, the approach relies on secret sharing but it differs in the implementation of logic functions. At Eurocrypt 2011 Moradi et al. published the to date most compact Threshold Implementation of AES-128 encryption. Their work shows that the number of required random bits may be an additional evaluation criterion, next to area and speed. We present a new Threshold Implementation of AES-128 encryption that is 18% smaller, 7.5% faster and that requires 8% less random bits than the implementation from Eurocrypt 2011. In addition, we provide results of a practical security evaluation based on real power traces in adversary-friendly conditions. They confirm the first-order attack resistance of our implementation and show good resistance against higher-order attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. AIST. Side-channel Attack Standard Evaluation BOard, http://staff.aist.go.jp/akashi.satoh/SASEBO/en/

  2. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon, N.: Mutual Information Analysis: A Comprehensive Study. J. Cryptol. 24(2), 269–291 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis resistant implementations of Keccak. In: Second SHA-3 Candidate Conference (August 2010)

    Google Scholar 

  4. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3 ×3 and 4 ×4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3 ×3 and 4 ×4 S-boxes. Cryptology ePrint Archive, Report 2012/300 (2012), http://eprint.iacr.org/

  7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Google Scholar 

  8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

    Google Scholar 

  10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Messerges, T.S.: Power analysis attacks and countermeasures on cryptographic algorithms. PhD thesis, University of Illinois at Chicago (2000)

    Google Scholar 

  14. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate to univariate. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 1–20. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2300 GE. J. Cryptology 24(2), 322–345 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  24. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V. (2014). A More Efficient AES Threshold Implementation. In: Pointcheval, D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham. https://doi.org/10.1007/978-3-319-06734-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06734-6_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06733-9

  • Online ISBN: 978-3-319-06734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation