Investigation of Crossing and Veering Phenomena in an Isogeometric Analysis Framework

  • Conference paper
  • First Online:
Topics in Modal Analysis II, Volume 8

Abstract

The dynamic properties of crossing and veering in coupled structures have been studied both numerically and analytically, but they are difficult to investigate using Finite Element Analysis because of the change in the topological arrangement due to the different configuration.

Isogeometric Analysis, recently developed method for numerical simulation, could overcome some of the drawbacks of the change in the configuration such as remeshing, coupling between the nodes of the different models, need of a fine mesh to allow small change in the configuration to be comparable to the mesh size.

The key of this method is to avoid meshing and using the same basis functions used by the geometry, namely Non-Uniform Rational B-Splines (NURBS), to define the discretization of a Finite Element model. Other advantages are the possibility of increasing the order of the functions to obtain smooth stress field across the element interfaces.

An experimental test-rig composed by beams and masses, which allow different configuration and dynamic coupling as well, is used as test case to validate the accuracy of the results with respect to both experimental data and classical Finite Element Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leissa W (1974) On a curve veering aberration. J Appl Math Phys (ZAMP) 25:99–111

    Article  MATH  Google Scholar 

  2. Chen X, Kareem A, Matsumoto M (2001) Multimode coupled flutter and buffeting analysis of long span bridges. J Wind Eng Ind Aerod 89:649–664

    Article  Google Scholar 

  3. Chan Y, Inman DJ (2010) Management of the variability of vibration response levels in mistuned bladed discs using robust design concepts. Part 1. Parameter design. Mech Syst Signal Pr 24:2777–2791

    Article  Google Scholar 

  4. Bae JS, Inman DJ, Lee I (2004) Effects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface. J Fluid Struct 19:747–763

    Article  Google Scholar 

  5. Khodaparast H, Mottershead JE, Badcock K (2010) Propagation of structural uncertainty to lineat aeroelastic stability. J Fluid Struct 88: 223–236

    Google Scholar 

  6. Tang D, Dowell E (2010) Aeroelastic response of aircraft with freeplay structural nonlinearity. In: Proceedings of 2nd aircraft structural design conference, London

    Google Scholar 

  7. Maeda T, Baburaj V, Ito Y, Koga T (1998) Flexural-torsional coupling effect on vibrational characteristics of angle-ply laminates. J Sound Vib 210(3):351–365

    Google Scholar 

  8. du Bois JL, Adhikari S, Lieven NA (2007) Experimental and numerical investigation of mode veering in a stressed structure. In: Proceedings of 25th IMAC, Orlando, FL

    Google Scholar 

  9. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  10. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(41–44):4160–4183

    Article  MATH  MathSciNet  Google Scholar 

  11. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200 (9–12):1100–1112

    Article  MATH  MathSciNet  Google Scholar 

  12. Jia L (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200 (5–8):726–741

    MATH  Google Scholar 

  13. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  14. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Meth Eng 87(13):1278–1300

    MATH  Google Scholar 

  15. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS-based finite elements. Comput Methods Appl Mech Eng 255:27–39

    Article  MathSciNet  Google Scholar 

  16. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33–40):2976–2988

    Article  MATH  MathSciNet  Google Scholar 

  17. Manh ND, Evgrafov A, Gersborg AR, Gravesen J (2011) Isogeometric shape optimization of vibrating membranes. Comput Methods Appl Mech Eng 200(13–16):1343–1353

    Article  MATH  MathSciNet  Google Scholar 

  18. Qian X, Sigmund O (2011) Isogeometric shape optimization of photonic crystals via Coons patches. Comput Methods Appl Mech Eng 200 (25–28):2237–2255

    Article  MATH  MathSciNet  Google Scholar 

  19. Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199 (29–32):2059–2071

    Article  MATH  Google Scholar 

  20. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MATH  MathSciNet  Google Scholar 

  21. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222

    Article  MathSciNet  Google Scholar 

  22. Nitsche J (1971) Uber ein variationsprinzip zur losung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Sem Univ Hamburg 36:9–15

    Article  MATH  MathSciNet  Google Scholar 

  23. Imregun M, Visser WJ (1991) A review of model updating techniques. Shock Vib Digest 23(1):9–20

    Article  Google Scholar 

  24. Mottershead JE, Friswell MI (1993) Model updating in structural dynamics: a survey. J Sound Vibr 167(2):347–375

    Article  MATH  Google Scholar 

  25. Kim KO, Anderson WJ, Sandstorm RE (1983) Non-linear inverse perturbation method in dynamic analysis. AIAA J 21(9):1310–1316

    Article  MATH  MathSciNet  Google Scholar 

  26. Lin RM, Lim MK, Du H (1995) Improved inverse eigensensitivity method for structural analytical model updating. Trans ASME J Vibr Acoust 117:192–198

    Article  Google Scholar 

  27. Bonisoli E, Fasana A, Garibaldi L, Marchesiello S (2002) Sensitivity analysis and damage location over the Z24 bridge. In: ONERA, Structural health monitoring, Paris, pp. 1007–1015

    Google Scholar 

  28. Bonisoli E, Delprete C, Esposito M, Mottershead JE (2011) Structural dynamics with coincident eigenvalues: modelling and testing. In: Proceedings of the 29th IMAC, vol 3(6). Detroit, MI, pp. 325–337

    Google Scholar 

  29. Piegl LA, Tiller W (1996) The NURBS book. Springer, Berlin

    Google Scholar 

  30. Fritz A, Hüeber S, Wohlmuth BI (2004) A comparison of mortar and Nitsche techniques for linear elasticity. CALCOLO 41(3):115–137

    Article  MATH  MathSciNet  Google Scholar 

  31. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–16

    MATH  MathSciNet  Google Scholar 

  32. Nguyen VP, Kerfriden P, Bordas S (2013) Isogeometric cohesive elements for two and three dimensional composite delamination analysis. Compos Sci Technol http://arxiv.org/abs/1305.2738

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Tornincasa, S., Bonisoli, E., Kerfriden, P., Brino, M. (2014). Investigation of Crossing and Veering Phenomena in an Isogeometric Analysis Framework. In: Allemang, R. (eds) Topics in Modal Analysis II, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04774-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04774-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04773-7

  • Online ISBN: 978-3-319-04774-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation