Spectral Element Based Optimization Scheme for Damage Identification

  • Conference paper
  • First Online:
Structural Health Monitoring, Volume 5

Abstract

Due to its simplicity, impedance-based structural health monitoring (SHM) has gained a lot of interest in the SHM community. Impedance measurements have proved to be very effective in detecting the presence of damage. Damage identification, on the other hand, can hardly be done with a single impedance measurement, and an array of sensors is normally required to identify damage location and severity. However, impedance measurements contain valuable information about the fundamental frequencies of the structure, and when combined with modelling, more quantitative information on structural damages can be extracted. In this study, a single impedance measurement is used for damage detection and identification in a beam. Spectral element model is developed to calculate the structural impedance of the damaged beam, and then damage defining parameters, which are damage location, width and severity, are updated through an optimization scheme. The proposed technique is computationally efficient, as it requires solving a very small system of equations with only three optimization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib Dig 35(6):451–464

    Article  Google Scholar 

  2. Liang C, Sun FP, Rogers CA (1994) Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer. J Intell Mater Syst Struct 5(1):12–20

    Article  Google Scholar 

  3. Giurgiutiu V, Zagrai AN (2000) Characterization of piezoelectric wafer active sensors. J Intell Mater Syst Struct 11(12):959–976

    Article  Google Scholar 

  4. Peairs DM, Tarazaga PA, Inman DJ (2007) Frequency range selection for impedance-based structural health monitoring. J Vib Acoust 129(6):701

    Article  Google Scholar 

  5. Nokes JP, Cloud GL (1993) The application of interferometric techniques to the nondestructive inspection of fiber-reinforced materials. Exp Mech 33(4):314–319

    Article  Google Scholar 

  6. Yang Y, Xu J, Soh C (2005) Generic impedance-based model for structure-piezoceramic interacting system. J Aerosp Eng 18(2):93–101

    Article  Google Scholar 

  7. Annamdas V, Soh C (2007) Three-dimensional electromechanical impedance model. I: formulation of directional sum impedance. J Aerosp Eng 20(1):53–62

    Article  Google Scholar 

  8. Lee U, Kim J, Leung AY (2000) The spectral element method in structural dynamics. Shock Vib Dig 32(6):451–465

    Article  Google Scholar 

  9. Doyle JF (1997) Wave propagation in structures: spectral analysis using fast discrete Fourier transforms. Springer, New York

    Book  MATH  Google Scholar 

  10. Peairs DM, Inman DJ, Park G (2007) Circuit analysis of impedance-based health monitoring of beams using spectral elements, Struct. Health Monit., 6(1):81–94

    Google Scholar 

  11. Park G, Cudney HH, Inman DJ (2000) An integrated health monitoring technique using structural impedance sensors. J Intell Mater Syst Struct 11(6):448–455

    Article  Google Scholar 

  12. Guo Z, Sun Z (2011) Spectral element modeling based structure piezoelectric impedance computation and damage identification. Front Archit Civ Eng China 5(4):458–464

    Article  MathSciNet  Google Scholar 

  13. Leo DJ (2007) Engineering analysis of smart material systems. Wiley, Hoboken

    Book  Google Scholar 

  14. Dilena M, Morassi A (2009) Structural health monitoring of rods based on natural frequency and antiresonant frequency measurements. Struct Health Monit 8(2):149–173

    Article  Google Scholar 

  15. Bhalla S, Soh C (2004) Structural health monitoring by piezo-impedance transducers. II: applications. J Aerosp Eng 17(4):166–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Albakri .

Editor information

Editors and Affiliations

Appendix

Appendix

Matrices H(ω) and G(ω) appearing in Eqs. 3.11 and 3.12 are

$$ H\left(\omega \right)=\left[\begin{array}{cccccc} {e}^{i{k}_0{x}_1} & {e}^{-i{k}_0{x}_1} & 0 & 0 & 0 & 0 \\ 0 & 0 & {e}^{-i{k}_1{x}_1} & {e}^{-i{k}_2{x}_1} & {e}^{-i{k}_3{x}_1} & {e}^{-i{k}_4{x}_1} \\ 0 & 0 & {R}_1{e}^{-i{k}_1{x}_1} & {R}_2{e}^{-i{k}_2{x}_1} & {R}_3{e}^{-i{k}_3{x}_1} & {R}_4{e}^{-i{k}_4{x}_1} \\ {e}^{i{k}_0{x}_2} & {e}^{-i{k}_0{x}_2} & 0 & 0 & 0 & 0 \\ 0 & 0 & {e}^{-i{k}_1{x}_2} & {e}^{-i{k}_2{x}_2} & {e}^{-i{k}_3{x}_2} & {e}^{-i{k}_4{x}_2} \\ 0 & 0 & {R}_1{e}^{-i{k}_1{x}_2} & {R}_2{e}^{-i{k}_2{x}_2} & {R}_3{e}^{-i{k}_3{x}_2} & {R}_4{e}^{-i{k}_4{x}_2} \end{array}\right] $$
$$ \begin{array}{lll}G\left(\omega \right)&=\left[\begin{array}{ccc} i{Y}_BA{k}_0{e}^{i{k}_0{x}_1} & -i{Y}_BA{k}_0{e}^{-i{k}_0{x}_1} & 0\\ 0 & 0 & - GA{K}_1\left(i{k}_1+{R}_1\right){e}^{-i{k}_1{x}_1}\\ 0 & 0 & -i{Y}_BI{k}_1{R}_1{e}^{-i{k}_1{x}_1}\\ i{Y}_BA{k}_0{e}^{i{k}_0{x}_2} & -i{Y}_BA{k}_0{e}^{-i{k}_0{x}_2} & 0\\ 0 & 0 & - GA{K}_1\left(i{k}_1+{R}_1\right){e}^{-i{k}_1{x}_2}\\ 0 & 0 & -i{Y}_BI{k}_1{R}_1{e}^{-i{k}_1{x}_2} \end{array}\right. &\qquad \left.\begin{array}{ccc} 0 & 0 & 0 \\ - GA{K}_1\left(i{k}_2+{R}_2\right){e}^{-i{k}_2{x}_1} & - GA{K}_1\left(i{k}_3+{R}_3\right){e}^{-i{k}_3{x}_1} & - GA{K}_1\left(i{k}_4+{R}_4\right){e}^{-i{k}_4{x}_1} \\ -i{Y}_BI{k}_2{R}_2{e}^{-i{k}_2{x}_1} & -i{Y}_BI{k}_3{R}_3{e}^{-i{k}_3{x}_1} & -i{Y}_BI{k}_4{R}_4{e}^{-i{k}_4{x}_1} \\ 0 & 0 & 0 \\ - GA{K}_1\left(i{k}_2+{R}_2\right){e}^{-i{k}_2{x}_2} & - GA{K}_1\left(i{k}_3+{R}_3\right){e}^{-i{k}_3{x}_2} & - GA{K}_1\left(i{k}_4+{R}_4\right){e}^{-i{k}_4{x}_2} \\ -i{Y}_BI{k}_2{R}_2{e}^{-i{k}_2{x}_2} & -i{Y}_BI{k}_3{R}_3{e}^{-i{k}_3{x}_2} & -i{Y}_BI{k}_4{R}_4{e}^{-i{k}_4{x}_2} \end{array}\right]\end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Albakri, M.I., Tarazaga, P.A. (2014). Spectral Element Based Optimization Scheme for Damage Identification. In: Wicks, A. (eds) Structural Health Monitoring, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04570-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04570-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04569-6

  • Online ISBN: 978-3-319-04570-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation