Floor Optical Flow Based Navigation Controller for Multirotor Aerial Vehicles

  • Conference paper
ROBOT2013: First Iberian Robotics Conference

Abstract

The presented work is focused on GPS-denied autonomous navigation for multirotor platforms. The problem of safe navigation based on noisy odometry measurements is discussed, and experimentally tested on the case of on-board optical flow measurements. A navigation controller is proposed which allows, through a group of configurable parameters, to ensure that the vehicle will fly on a speed specified flight envelope where the quality of the optical flow measurements is guaranteed. In order to attain safe navigation, the multirotor is modeled as a flying vehicle with specific kinematic constraints. The designed unperfect odometry based controller architecture has been experimentally tested on various multirotor vehicles, where the vehicles featured similar sensoring capabilities and the tolerance of our approach have been demonstrated. This work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on “Best Automatic Performance - IMAV 2012” and the second overall prize in the category of “Indoor Flight Dynamics - Rotary Wing MAV”. Most of the related code is available as two open-source projects hosted on GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Navigation and Control Technology Inside the AR.Drone Micro UAV, Milano, Italy (2011)

    Google Scholar 

  2. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An Open Source and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and Outdoor Applications. In: International Conference on Robotics and Automation, ICRA 2013 (2013)

    Google Scholar 

  3. Zingg, S., Scaramuzza, D., Weiss, S., Siegwart, R.: MAV Navigation through Indoor Corridors Using Optical Flow. In: 2010 IEEE International Conference on Robotics and Automation, ICRA (2010)

    Google Scholar 

  4. Zufferey, J.-C., Beyeler, A., Floreano, D.: Autonomous flight at low altitude with vision-based collision avoidance and GPS-based path following. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE (2010), http://icra2010.grasp.upenn.edu/

  5. Lippiello, V., Loianno, G., Siciliano, B.: MAV indoor navigation based on a closed-form solution for absolute scale velocity estimation using Optical Flow and inertial data. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 3566–3571 (2011)

    Google Scholar 

  6. Conroy, J., Gremillion, G., Ranganathan, B., Humbert, J.S.: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Autonomous Robots 27(3), 189–198 (2009)

    Article  Google Scholar 

  7. Pestana, J., Mellado-Bataller, I., Fu, C., Sanchez-Lopez, J.L., Mondragon, I.F., Campoy, P.: A general purpose configurable navigation controller for micro aerial multirotor vehicles. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 557–564 (2013)

    Google Scholar 

  8. Pestana, J.: On-board control algorithms for Quadrotors and indoors navigation. Master’s thesis, Universidad Politécnica de Madrid, Spain (2012)

    Google Scholar 

  9. Mellado Bataller, I.: A new framework for interfacing with MAVs (August 2012), https://github.com/uavster/mavwork

  10. Pestana, J.: A general purpose multirotor controller compatible with multiple multirotor vehicles and with the mavwork open-source project (February 2013), https://github.com/jespestana/MultirotorController4mavwork

  11. Motion capture systems from vicon, http://www.vicon.com/

  12. Mellinger, D., Michael, N., Kumar, V.: Trajectory Generation and Control for Precise Aggressive Maneuvers with Quadrotors. In: Khatib, O., Kumar, V., Sukhatme, G. (eds.) Experimental Robotics. STAR, vol. 79, pp. 361–373. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Michael, N., Mellinger, D., Lindsey, Q.: The GRASP Multiple Micro UAV Testbed. IEEE Robotics & Automation Magazine 17(3), 56–65 (2010)

    Article  Google Scholar 

  14. Lupashin, S., Schollig, A., Sherback, M., D’Andrea, R.: A Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips. In: 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 1642–1648 (2010)

    Google Scholar 

  15. Kushleyev, A., Kumar, V., Mellinger, D.: Towards a swarm of agile micro quadrotors. In: Proceedings of Robotics: Science and Systems, Sydney, Australia (July 2012)

    Google Scholar 

  16. Schölling, A., Augugliaro, F., Lupashin, S., D’Andrea, R.: Synchronizing the Motion of a Quadrocopter to Music. In: IEEE International Conference on Robotics and Automation ICRA, pp. 3355–3360 (2010), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509755

  17. The Stanford/Berkeley Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) project, http://hybrid.eecs.berkeley.edu/starmac/

  18. Hoffmann, G., Waslander, S.L., Tomlin, C.J.: Quadrotor Helicopter Trajectory Tracking Control. In: AIAA Guidance, Navigation and Control Conference and Exhibit 2008, pp. 1–14 (2008)

    Google Scholar 

  19. Hoffmann, G., Waslander, S., Tomlin, C.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3277–3282. IEEE (May 2009)

    Google Scholar 

  20. Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J.: Design of Guaranteed Safe Maneuvers Using Reachable Sets: Autonomous Quadrotor Aerobatics in Theory and Practice. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1649–1654 (2010)

    Google Scholar 

  21. Rudol, P., Wzorek, M., Conte, G., Doherty, P.: Micro unmanned aerial vehicle visual servoing for cooperative indoor exploration. In: 2008 IEEE Conference on Aerospace (2008)

    Google Scholar 

  22. Pestana, J., Mellado-Bataller, I., Fu, C., Sanchez-Lopez, J.L., Mondragon, I.F., Campoy, P.: A Visual Guided Quadrotor for IMAV 2012 Indoor Autonomy Competition and Visual Control of a Quadrotor for the IMAV 2012 Indoor Dynamics Competition. In: 2012 Conference and Flight Competition International Micro Air Vehicle, IMAV (2012)

    Google Scholar 

  23. Fu, C., Pestana, J., I., Mellado-Bataller, Sanchez-Lopez, J.L., Campoy, P.: Visual identification and tracking for vertical and horizontal targets in gps-denied indoor environments. In: 2012 Conference and Flight Competition International Micro Air Vehicle, IMAV (2012)

    Google Scholar 

  24. International micro air vehicle conference and flight competition IMAV, program information for flight competition brochure (2012), http://www.dgon-imav.org/3.0.html#c214

  25. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-Drone as a Platform for Robotic Research and Education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Mellado-Bataller, I., Mejias, L., Campoy, P., Olivares-Mendez, M.A.: Rapid prototy** framework for visual control of autonomous micro aerial vehicles. In: 12th International Conference on Intelligent Autonomous System (IAS 2012), Jeju Island, Korea (June 2012), http://eprints.qut.edu.au/50709/

  27. Mellado-Bataller, I., Pestana, J., Olivares-Mendez, M.A., Campoy, P., Mejias, L.: MAVwork: A framework for unified interfacing between micro aerial vehicles and visual controllers. In: Lee, S., Yoon, K.-J., Lee, J. (eds.) Frontiers of Intelligent Auton. Syst. SCI, vol. 466, pp. 165–179. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Pestana Puerta, J.: On-board control algorithms for quadrotors and indoors navigation. Master’s thesis, Universidad Politécnica de Madrid, Spain (October 2012)

    Google Scholar 

  29. UAS Technologies Sweden AB, LinkQuad quadrotor website, http://uastech.com/platforms.htm

  30. MikroKopter, OktoKopter multirotor website, http://www.mikrokopter.de/ucwiki/en/MK-Okto

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pestana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu, C., Mondragón, I.F., Campoy, P. (2014). Floor Optical Flow Based Navigation Controller for Multirotor Aerial Vehicles. In: Armada, M., Sanfeliu, A., Ferre, M. (eds) ROBOT2013: First Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 253. Springer, Cham. https://doi.org/10.1007/978-3-319-03653-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03653-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03652-6

  • Online ISBN: 978-3-319-03653-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation