One-Dimensional Bi-Based Nanostructures for Thermoelectrics

  • Chapter
  • First Online:
Nanoscale Thermoelectrics

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 16))

Abstract

Bi and its alloys are important thermoelectric materials for solid-state refrigeration and power generation. An increase in the thermoelectric figure of merit is predicted due to quantum confinement and phonon scattering at interfaces for one-dimensional (1D) nanostructured thermoelectric materials. This chapter addresses recent developments in Bi-based nanostructured thermoelectric materials focused mainly on nanowires, nanotubes, and heterostructures. In addition, current challenges in preparation and measurement of 1D nanostructured thermoelectric materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hochbaum, A.I., Chen, R.K., Delgado, R.D., Liang, W.J., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.D.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–165 (2008)

    Article  Google Scholar 

  2. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007)

    Article  Google Scholar 

  3. Li, Z., Sun, Q., Yao, X.D., Zhu, Z.H., Lu, G.Q.: Semiconductor nanowires for thermoelectrics. J. Mater. Chem. 22(43), 22821–22831 (2012)

    Article  Google Scholar 

  4. Hochbaum, A.I., Yang, P.D.: Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)

    Article  Google Scholar 

  5. Bejan A, Kraus AD.: Heat Transfer Handbook. Wiley, New York (2003)

    Google Scholar 

  6. Sootsman, J.R., Chung, D.Y., Kanatzidis, M.G.: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48(46), 8616–8639 (2009)

    Article  Google Scholar 

  7. Zhang, G.Q., Yu, Q.X., Wang, W., Li, X.G.: Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv. Mater. 22(17), 1959–1962 (2010)

    Article  Google Scholar 

  8. Nielsch, K., Bachmann, J., Kimling, J., Bottner, H.: Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv. Energy Mater. 1(5), 713–731 (2011)

    Article  Google Scholar 

  9. Hicks, L., Dresselhaus, M.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727 (1993)

    Article  Google Scholar 

  10. Hicks, L., Dresselhaus, M.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993)

    Article  Google Scholar 

  11. Zhang, G., Yu, Q., Li, X.: Wet chemical synthesis and thermoelectric properties of V-VI one-and two-dimensional nanostructures. Dalton Trans. 39(4), 993–1004 (2009)

    Article  Google Scholar 

  12. **, C.G., Jiang, G.W., Liu, W.F., Cai, W.L., Yao, L.Z., Yao, Z., Li, X.G.: Fabrication of large-area single crystal bismuth nanowire arrays. J. Mater. Chem. 13(7), 1743–1746 (2003)

    Article  Google Scholar 

  13. Prieto, A.L., Martín-González, M., Keyani, J., Gronsky, R., Sands, T., Stacy, A.M.: The electrodeposition of high-density, ordered arrays of Bi1-x Sb x nanowires. J. Am. Chem. Soc. 125(9), 2388–2389 (2003)

    Article  Google Scholar 

  14. Sander, M.S., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M.: Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv. Mater. 14(9), 665–667 (2002)

    Article  Google Scholar 

  15. Sander, M.S., Gronsky, R., Sands, T., Stacy, A.M.: Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chem. Mater. 15(1), 335–339 (2003)

    Article  Google Scholar 

  16. Martin-Gonzalez, M., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M.: High‐density 40 nm diameter Sb‐rich Bi2-x Sb x Te3 nanowire arrays. Adv. Mater. 15(12), 1003–1006 (2003)

    Article  Google Scholar 

  17. Martin-Gonzalez, M., Snyder, G.J., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M.: Direct electrodeposition of highly dense 50 nm Bi2Te3-y Se y nanowire arrays. Nano Lett. 3(7), 973–977 (2003)

    Article  Google Scholar 

  18. Lim, J.R., Whitacre, J.F., Fleurial, J.P., Huang, C.K., Ryan, M.A., Myung, N.V.: Fabrication method for thermoelectric nanodevices. Adv. Mater. 17(12), 1488–1492 (2005)

    Article  Google Scholar 

  19. **ao, F., Yoo, B., Lee, K.H., Myung, N.V.: Electro-transport studies of electrodeposited (Bi1-x Sb x ) 2Te3 nanowires. Nanotechnology 18, 335203 (2007)

    Article  Google Scholar 

  20. Li, X.H., Koukharenko, E., Nandhakumar, I.S., Tudor, J., Beeby, S.P., White, N.M.: High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography. Phys. Chem. Chem. Phys. 11(18), 3584–3590 (2009)

    Article  Google Scholar 

  21. Nielsch, K., Müller, F., Li, A.P., Gösele, U.: Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12(8), 582–586 (2000)

    Article  Google Scholar 

  22. Zhang, Y., Li, G., Wu, Y., Zhang, B., Song, W., Zhang, L.: Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv. Mater. 14(17), 1227–1230 (2002)

    Article  Google Scholar 

  23. Peranio, N., Leister, E., Töllner, W., Eibl, O., Nielsch, K.: Stoichiometry controlled, single‐crystalline Bi2Te3 nanowires for transport in the basal plane. Adv. Funct. Mater. 22(1), 151–156 (2012)

    Article  Google Scholar 

  24. Li, L., Zhang, Y., Li, G., Zhang, L.: A route to fabricate single crystalline bismuth nanowire arrays with different diameters. Chem. Phys. Lett. 378(3), 244–249 (2003)

    Article  Google Scholar 

  25. Li, L., Li, G., Zhang, Y., Yang, Y., Zhang, L.: Pulsed electrodeposition of large-area, ordered Bi1-x Sb x nanowire arrays from aqueous solutions. J. Phys. Chem. B 108(50), 19380–19383 (2004)

    Article  Google Scholar 

  26. Zhu, Y.G., Dou, X.C., Huang, X.H., Li, L., Li, G.H.: Thermal properties of bi nanowire arrays with different orientations and diameters. J. Phys. Chem. B 110(51), 26189–26193 (2006)

    Article  Google Scholar 

  27. Dou, X.C., Zhu, Y.G., Huang, X.H., Li, L., Li, G.G.: Effective deposition potential induced size-dependent orientation growth of Bi-Sb alloy nanowire arrays. J. Phys. Chem. B 110(43), 21572–21575 (2006)

    Article  Google Scholar 

  28. Li, L., Yang, Y.W., Huang, X.H., Li, G.H., Zhang, L.D.: Pulsed electrodeposition of single-crystalline Bi2Te3 nanowire arrays. Nanotechnology 17(6), 1706–1712 (2006)

    Article  Google Scholar 

  29. Lee, J., Farhangfar, S., Cagnon, L., Scholz, R., Gösele, U., Nielsch, K.: Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19(36), 365701 (2008)

    Article  Google Scholar 

  30. Muller, S., Schotz, C., Picht, O., Sigle, W., Kopold, P., Rauber, M., Alber, I., Neumann, R., Toimil-Molares, M.E.: Electrochemical synthesis of Bi1-x Sb x nanowires with simultaneous control on size, composition, and surface roughness. Cryst. Growth Des. 12(2), 615–621 (2012)

    Article  Google Scholar 

  31. Picht, O., Muller, S., Alber, I., Rauber, M., Lensch-Falk, J., Medlin, D.L., Neumann, R., Toimil-Molares, M.E.: Tuning the geometrical and crystallographic characteristics of Bi2Te3 nanowires by electrodeposition in ion-track membranes. J. Phys. Chem. C 116(9), 5367–5375 (2012)

    Article  Google Scholar 

  32. Li, L., **ao, Y.H., Yang, Y.W., Huang, X.H., Li, G.H., Zhang, L.D.: A facile route to fabricate single-crystalline antimony nanotube arrays. Chem. Lett. 34(7), 930–931 (2005)

    Article  Google Scholar 

  33. Li, L., Yang, Y.W., Huang, X.H., Li, G.H., Ang, R., Zhang, L.D.: Fabrication and electronic transport properties of Bi nanotube arrays. Appl. Phys. Lett. 88(10) (2006)

    Google Scholar 

  34. Yang, D.C., Meng, G.W., Xu, Q.L., Han, F.M., Kong, M.G., Zhang, L.D.: Electronic transport behavior of bismuth nanotubes with a predesigned wall thickness. J. Phys. Chem. C 112(23), 8614–8616 (2008)

    Article  Google Scholar 

  35. Li, X.H., Zhou, B., Pu, L., Zhu, J.J.: Electrodeposition of Bi2Te3 and Bi2Te3 derived alloy nanotube arrays. Cryst. Growth Des. 8(3), 771–775 (2008)

    Article  Google Scholar 

  36. Pinisetty, D., Davis, D., Podlaha-Murphy, E.J., Murphy, M.C., Karki, A.B.., Young, D.P., Devireddy, R.V.: Characterization of electrodeposited bismuth-tellurium nanowires and nanotubes. Acta Mater. 59(6), 2455–2461 (2011)

    Article  Google Scholar 

  37. Pinisetty, D., Gupta, M., Karki, A., Young, D., Devireddy, R.: Fabrication and characterization of electrodeposited antimony telluride crystalline nanowires and nanotubes. J. Mater. Chem. 21(12), 4098–4107 (2011)

    Article  Google Scholar 

  38. Dou, X., Li, G., Huang, X., Li, L.: Abnormal growth of electrodeposited BiSb alloy nanotubes. J. Phys. Chem. C 112(22), 8167–8171 (2008)

    Article  Google Scholar 

  39. Lin, Y.M., Dresselhaus, M.S.: Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68(7) (2003)

    Google Scholar 

  40. Dou, X.C., Li, G.H., Lei, H.C.: Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett. 8(5), 1286–1290 (2008)

    Article  Google Scholar 

  41. Xue, F.H., Fei, G.T., Wu, B., Cui, P., Zhang, L.D.: Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J. Am. Chem. Soc. 127(44), 15348–15349 (2005)

    Article  Google Scholar 

  42. Yoo, B., **ao, F., Bozhilov, K.N., Herman, J., Ryan, M.A., Myung, N.V.: Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19(2), 296–299 (2007)

    Article  Google Scholar 

  43. Wang, W., Zhang, G., Li, X.: Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays. J. Phys. Chem. C 112(39), 15190–15194 (2008)

    Article  Google Scholar 

  44. Dou, X.C., Li, G.H., Lei, H.C., Huang, X.H., Li, L., Boyd, I.W.: Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition. J. Electrochem. Soc. 156(9), K149–K154 (2009)

    Article  Google Scholar 

  45. Wang, W., Lu, X., Zhang, T., Zhang, G., Jiang, W., Li, X.: Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation. J. Am. Chem. Soc. 129(21), 6702–6703 (2007)

    Article  Google Scholar 

  46. Shim, W., Ham, J., Lee, K., Jeung, W.Y., Johnson, M., Lee, W.: On-film formation of Bi nanowires with extraordinary electron mobility. Nano Lett. 9(1), 18–22 (2009)

    Article  Google Scholar 

  47. Ham, J., Shim, W., Kim, D.H., Lee, S., Roh, J., Sohn, S.W., Oh, K.H., Voorhees, P.W., Lee, W.: Direct growth of compound semiconductor nanowires by on-film formation of nanowires: bismuth telluride. Nano Lett. 9(8), 2867–2872 (2009)

    Article  Google Scholar 

  48. Kang, J., Roh, J.W., Shim, W., Ham, J., Noh, J.S., Lee, W.: Reduction of lattice thermal conductivity in single Bi-Te core/shell nanowires with rough interface. Adv. Mater. 23(30), 3414–3419 (2011)

    Article  Google Scholar 

  49. Kang, J., Shim, W., Lee, S., Roh, J.W., Noh, J.-S., Voorhees, P.W., Lee, W.: Thermodynamic-enabled synthesis of Bi/Bi14Te6 axial heterostructure nanowires. J. Mater. Chem. A 1(7), 2395–2400 (2013)

    Article  Google Scholar 

  50. Zhang, G., Yu, Q., Yao, Z., Li, X.: Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chem. Commun. 17, 2317–2319 (2009)

    Article  Google Scholar 

  51. Zhang, G.Q., Kirk, B., Jauregui, L.A., Yang, H.R., Xu, X.F., Chen, Y.P., Wu, Y.: Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett. 12(1), 56–60 (2012)

    Article  Google Scholar 

  52. Zhang, G., Fang, H., Yang, H., Jauregui, L.A., Chen, Y.P., Wu, Y.: Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012)

    Article  Google Scholar 

  53. Tang, C., Li, G., Dou, X., Zhang, Y., Li, L.: Thermal expansion behaviors of bismuth nanowires. J. Phys. Chem. C 113(14), 5422–5427 (2009)

    Article  Google Scholar 

  54. **a, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One‐dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  Google Scholar 

  55. Zhao, Y.X., Dyck, J.S., Burda, C.: Toward high-performance nanostructured thermoelectric materials: the progress of bottom-up solution chemistry approaches. J. Mater. Chem. 21(43), 17049–17058 (2011)

    Article  Google Scholar 

  56. Lin, Y.M., Sun, X.Z., Dresselhaus, M.S.: Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 62(7), 4610–4623 (2000)

    Article  Google Scholar 

  57. Zhang, Z.B., Sun, X.Z., Dresselhaus, M.S., Ying, J.Y., Heremans, J.: Electronic transport properties of single-crystal bismuth nanowire arrays. Phys. Rev. B 61(7), 4850–4861 (2000)

    Article  Google Scholar 

  58. Li, L., Yang, Y.W., Fang, X.S., Kong, M.G., Li, G.H., Zhang, L.D.: Diameter-dependent electrical transport properties of bismuth nanowire arrays. Solid State Commun. 141(9), 492–496 (2007)

    Article  Google Scholar 

  59. Cronin, S.B., Lin, Y.M., Rabin, O., Black, M.R., Ying, J.Y., Dresselhaus, M.S., Gai, P.L., Minet, J.P., Issi, J.P.: Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology 13(5), 653–658 (2002)

    Article  Google Scholar 

  60. Lee, S., Ham, J., Jeon, K., Noh, J.S., Lee, W.: Direct observation of the semimetal-to-semiconductor transition of individual single-crystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology 21(40), 405701 (2010)

    Article  Google Scholar 

  61. Lin, Y.M., Rabin, O., Cronin, S., Ying, J.Y., Dresselhaus, M.: Semimetal–semiconductor transition in Bi 1-x Sb x alloy nanowires and their thermoelectric properties. Appl. Phys. Lett. 81(13), 2403–2405 (2002)

    Article  Google Scholar 

  62. Zhou, G., Li, L., Li, G.H.: Semimetal to semiconductor transition and thermoelectric properties of bismuth nanotubes. J. Appl. Phys. 109(11) (2011)

    Google Scholar 

  63. Chen, C.L., Chen, Y.Y., Lin, S.J., Ho, J.C., Lee, P.C., Chen, C.D., Harutyunyan, S.R.: Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J. Phys. Chem. C 114(8), 3385–3389 (2010)

    Article  Google Scholar 

  64. Heremans, J., Thrush, C.: Thermoelectric power of bismuth nanowires. Phys. Rev. B 59(19), 12579 (1999)

    Article  Google Scholar 

  65. Lee, J., Kim, Y., Cagnon, L., Gösele, U., Nielsch, K.: Power factor measurements of bismuth telluride nanowires grown by pulsed electrodeposition. physica status solidi (RRL)-Rapid. Res. Lett. 4(1–2), 43–45 (2010)

    Google Scholar 

  66. Munoz Rojo, M., Grauby, S., Rampnoux, J.-M., Caballero-Calero, O., Martin-Gonzalez, M., Dilhaire, S.: Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Appl. Phys. 113(5), 054308-054308-054307 (2013)

    Article  Google Scholar 

  67. Biswas, K.G., Sands, T.D., Cola, B.A., Xu, X.: Thermal conductivity of bismuth telluride nanowire array-epoxy composite. Appl. Phys. Lett. 94(22), 223116-223116-223113 (2009)

    Article  Google Scholar 

  68. Harman, T., Cahn, J., Logan, M.: Measurement of thermal conductivity by utilization of the Peltier effect. J. Appl. Phys. 30(9), 1351–1359 (1959)

    Article  Google Scholar 

  69. Menke, E.J., Brown, M.A., Li, Q., Hemminger, J.C., Penner, R.M.: Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/strip**, thinning by electrooxidation, and electrical power generation. Langmuir 22(25), 10564–10574 (2006)

    Article  Google Scholar 

  70. Keyani, J., Stacy, A.M., Sharp, J.: Assembly and measurement of a hybrid nanowire-bulk thermoelectric device. Appl. Phys. Lett. 89, 233106 (2006)

    Article  Google Scholar 

  71. Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P., Majumdar, A.: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125(5), 881–888 (2003)

    Article  Google Scholar 

  72. Boukai, A., Xu, K., Heath, J.R.: Size‐dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 18(7), 864–869 (2006)

    Article  Google Scholar 

  73. Zhou, J., **, C., Seol, J.H., Li, X., Shi, L.: Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Appl. Phys. Lett. 87(13), 133109-133109-133103 (2005)

    Article  Google Scholar 

  74. Mavrokefalos, A., Pettes, M.T., Zhou, F., Shi, L.: Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78(3), 034901-034901-034906 (2007)

    Google Scholar 

  75. Mavrokefalos, A., Moore, A.L., Pettes, M.T., Shi, L., Wang, W., Li, X.: Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 105(10), 104318-104318-104318 (2009)

    Article  Google Scholar 

  76. Zuev, Y.M., Lee, J.S., Galloy, C., Park, H., Kim, P.: Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 10(8), 3037–3040 (2010)

    Article  Google Scholar 

  77. Moore, A.L., Pettes, M.T., Zhou, F., Shi, L.: Thermal conductivity suppression in bismuth nanowires. J. Appl. Phys. 106(3), 034310-034310-034317 (2009)

    Article  Google Scholar 

  78. Roh, J.W., Hippalgaonkar, K., Ham, J.H., Chen, R., Li, M.Z., Ercius, P., Majumdar, A., Kim, W., Lee, W.: Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires. ACS Nano 5(5), 3954 (2011)

    Article  Google Scholar 

  79. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22(36), 3970–3980 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support given by the National Natural Science Foundation of China (No: 11174285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or Guanghai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, L., Li, G. (2014). One-Dimensional Bi-Based Nanostructures for Thermoelectrics. In: Wang, X., Wang, Z. (eds) Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-02012-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02012-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02011-2

  • Online ISBN: 978-3-319-02012-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation