Adaptation Schemes and Dynamic Optimization Problems: A Basic Study on the Adaptive Hill Climbing Memetic Algorithm

  • Chapter
Nature Inspired Cooperative Strategies for Optimization (NICSO 2013)

Abstract

An open question that arises in the design of adaptive schemes for Dynamic Optimization Problems consists on deciding what to do with the knowledge acquired once a change in the environment is detected: forget it or use it in subsequent changes? In this work, the knowledge is associated with the selection probability of two local search operators in the Adaptive Hill Climbing Memetic Algorithm. When a problem change is detected, those probability values can be restarted or maintained. The experiments performed over five binary coded problems (for a total of 140 different scenarios) clearly show that kee** the information is better than forgetting it.

This work is supported in part by Projects TIN2011-27696-C02-01, Spanish Ministry of Economy and Competitiveness and P11-TIC-8001 from the Andalusian Government (including FEDER funds from the European Union).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. del Amo, I.G., Pelta, D.A., Gonzalez, J.R., Masegosa, A.D.: An algorithm comparison for dynamic optimization problems. Applied Soft Computing 12(10), 3176–3192 (2012), http://www.sciencedirect.com/science/article/pii/S1568494612002700 , doi:10.1016/j.asoc.2012.05.021

    Article  Google Scholar 

  2. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Yang, S., Ong, Y.-S., **, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments. SCI, vol. 51, pp. 29–49. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-49774-5_2

    Chapter  Google Scholar 

  3. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4) (2006)

    Google Scholar 

  4. Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization problems. In: Advances in Evolutionary Computing. Natural Computing Series, pp. 239–262 (2003), http://dx.doi.org/10.1007/978-3-642-18965-4_9 , doi:10.1007/978-3-642-18965-4_9

  5. Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing 15(7), 1427–1448 (2011)

    Article  Google Scholar 

  6. García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 special session on real parameter optimization. Journal of Heuristics 15(6), 617–644 (2009), http://dx.doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  7. Gonzalez, J.R., Masegosa, A.D., del Amo, I.G.: A cooperative strategy for solving dynamic optimization problems. Memetic Computing 3, 3–14 (2011), http://dx.doi.org/10.1007/s12293-010-0031-x

    Article  Google Scholar 

  8. González, J.R., Cruz, C., del Amo, I.G., Pelta, D.A.: An adaptive multiagent strategy for solving combinatorial dynamic optimization problems. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 41–55. Springer, Heidelberg (2011), http://www.springerlink.com/content/c1006661q2h06577/

    Chapter  Google Scholar 

  9. Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach to dynamic tsp. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 860–867 (2001)

    Google Scholar 

  10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)

    Google Scholar 

  11. Krasnogor, N., Smith, J.: A memetic algorithm with self-adaptive local search: TSP as a case study. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 987–994 (2000)

    Google Scholar 

  12. Krasnogor, N., Smith, J.: Emergence of profitable search strategies based on a simple inheritance mechanism. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 432–439 (2001)

    Google Scholar 

  13. Li, C., Yang, S.: Fast multi-swarm optimization for dynamic optimization problems. In: Natural Computation, ICNC 2008, vol. 7, pp. 624–628 (2008)

    Google Scholar 

  14. Liu, L., Wang, D., Ip, W.: A permutation-based dual genetic algorithm for dynamic optimization problems. Soft Computing 13(7), 725–738 (2009), http://dx.doi.org/10.1007/s00500-008-0345-5

    Article  Google Scholar 

  15. Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the dynamic travelling salesman problem. Soft Computing 15(7), 1405–1425 (2011), http://dx.doi.org/10.1007/s00500-010-0680-1

    Article  Google Scholar 

  16. Pisinger, D.: Where are the hard knapsack problems? Computers and Operations Research 32(9), 2271–2284 (2005), http://www.sciencedirect.com/science/article/pii/S030505480400036X

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H., Wang, D., Yang, S.: A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Computing 13(8-9), 763–780 (2009), http://www.springerlink.com/content/5vu17644466p7200/ , doi:10.1007/s00500-008-0347-3

    Article  Google Scholar 

  18. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing 9(11), 815–834 (2005), http://dx.doi.org/10.1007/s00500-004-0422-3 , doi:10.1007/s00500-004-0422-3

    Article  MATH  Google Scholar 

  19. Yang, S., Ong, Y., **, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. SCI, vol. 51. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Fajardo Calderín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calderín, J.F., Masegosa, A.D., Suárez, A.R., Pelta, D.A. (2014). Adaptation Schemes and Dynamic Optimization Problems: A Basic Study on the Adaptive Hill Climbing Memetic Algorithm. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation