Pharmacokinetic studies of (—)-deprenyl and some of its metabolites in mouse

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

(—)-Deprenyl is a selective irreversible inhibitor of MAO-B. The parent compound is responsible for the enzyme inhibitory effect, but its metabolites are also playing a role in the complex pharmacological activity of the substance. In the present studies male NMRI mice were treated orally, subcutaneously, intraperitoneally and intravenously with 5mg/kg of (—)-deprenyl. The time related changes of the plasma concentrations of the parent compound and its main metabolites (methamphetamine, desmethyl-deprenyl and amphetamine) were determined by GC/ MSD technique. The main pharmacokinetic parameters (Cmax, tmax, t1/2 β, AUC0–6, AUC0-∞) have been calculated. (—)-Deprenyl is well absorbed after oral and parental treatment. The peak concentrations (Cmax) were reached at 15 min after treatment and the absorption was followed by a fast elimination (t1/2 β 2h). (—)-Deprenyl has an intensive “first pass” metabolism after oral treatment; only 25% of the parent compound reaches the systemic circulation. Increased bioavailability was detected after subcutaneous (87.1%) and intraperitoneal (78.7%) administration. The main metabolic pathway of (—)-deprenyl is the N-depropargylation, leading to the formation of methamphetamine. N-demethylation of (—)-deprenyl leads to formation of desmethyl-deprenyl. Amphetamine is produced from both former metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Martin J (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar® treatment in Parkinson’s disease: a long-term study. J Neural Transm 64: 113–128

    Article  PubMed  CAS  Google Scholar 

  • Carillo MC, Kanai S, Nokubo M, Kitani K (1991) (—)-Deprenyl induces activities of both Superoxide dismutase and catalase but not of glutathione peroxidise in the striatum of young male rats. Life Sci 48: 517–521

    Article  Google Scholar 

  • Finnegan KT, Skratt JJ, Irwin I, DeLanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 184: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Gaál J, Szebeni Gy, Székács G, Fejér E, Wágner Ö, Szatmári I, Magyar K, Mezei M (2000) Transdermal formulations of deprenyl: guinea pig and pig models. Neurobiology 8(2): 143–166

    PubMed  Google Scholar 

  • Gordon MN, Muller CD, Sherman KA, Morgan DG, Azzaro AJ, Wecker L (1999) Oral versus transdermal selegiline antidepressant-like activity in rats. Pharmacol Biochem Behav 63(3): 501–506

    Article  PubMed  CAS  Google Scholar 

  • Haberle D, Szökő É, Magyar K (2002) The influence of metabolism on the MAO-B inhibitory potency of selegiline. Curr Med Chem 9: 47–51

    PubMed  CAS  Google Scholar 

  • Heinonen EH, Myllyla V, Sotaniemi K, Lammintausta R, Salonen JS, Anttila, M et al (1989) Pharmacokinetics and metabiolism of selegiline. Acta Neurol Scand 126: 93–99

    CAS  Google Scholar 

  • Knoll J (1989) The pharmacology of selegiline ((—)-deprenyl). New aspects. Acta Neurol Scand Suppl 126: 83–91

    PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. In: Costa E, Sandier M (eds) Monoamine Oxidases — new vistas. Adv Biochem Psychopharmacol, Vol. 5. Raven Press, New York, pp 393–408

    Google Scholar 

  • Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethyl-propinylamine (E-250), a new spectrum psychic energizer. Arc Int Pharmacodyn Ther 155: 154–164

    CAS  Google Scholar 

  • Langsten JW (1980) Selegiline as neuroprotective therapy in Parkinson’s disease: concepts and controversies. Neurology Suppl 3 40: 61–66

    Google Scholar 

  • Lengyel J, Magyar K, Hollósi I, Bartók T, Báthori M, Kalász H, Fürst S (1997) Urinary excretion of deprenyl metabolites. J Chromatorgr A 762(1–2): 321–326

    Article  CAS  Google Scholar 

  • Magyar K (1993) Pharmacology of monoamine oxidase type-B inhibitors. In: Szelényi I (ed) Inhibitors of monoamine oxidase B: pharmacology and clinical use in neurodegenerative disorders. Birkhäuser, Basel, Switzerland, pp 125–143

    Google Scholar 

  • Magyar K (1994) Behaviour of (—)-deprenyl and its analogues. J Neural Transm Suppl 41: 167–175

    Google Scholar 

  • Magyar K (1997) The role of the metabolism of (—)-deprenyl in neuro-protection. In: Teelken AW, Korf J (eds) Proc 1 1th ESN Meeting. Neurochemistry section 12: Neuroprotection and neurorescue: myths and mechanisms, pp 303–308

    Google Scholar 

  • Magyar K, Haberle D (1999) Neuroprotective and neuronal rescue effects of selegiline: review. Neurobiology 7(2): 175–190

    PubMed  CAS  Google Scholar 

  • Magyar K, Szende B (2000) The neuroprotective and neuronal rescue effect of (—)-deprenyl. In: Cameron RG, Feuer G (eds) Handbook experimental pharmacology, Vol. 142. Springer, Berlin Heidelberg New York Tokyo, pp 457–472

    Google Scholar 

  • Magyar K, Vizi ES, Ecseri Z, Knoll J (1967) Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methyl-propinylamine (E-250). Acta Physiol Acad Sci Hung 32(4): 377–387

    PubMed  CAS  Google Scholar 

  • Magyar K, Lengyel J, Szatmári I, Gaál J (1995) The distribution of orally administered (—)-deprenyl-propynyl-14C and (—)-deprenyl-phenyl-3H in rat brain. Progress Brain Res 106: 143–153

    CAS  Google Scholar 

  • Magyar K, Szende B, Lengyel J, Tekes K (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (—)-deprenyl research. J Neural Transm Suppl 48: 29–43

    Google Scholar 

  • Magyar K, Szende B, Lengyel J, Tarczali J, Szatmáry I (1998) The neuroprotective and neuronal rescue effects of (—)-deprenyl. J Neural Transm Suppl 52: 109–123

    Google Scholar 

  • Magyar K, Pálfi M, Tábi T, Kalász H, Szende B, Szökő É (2004) Pharmacological aspects of (—)-deprenyl. Curr Med Chem 11: 2017–2031

    PubMed  CAS  Google Scholar 

  • Olanow CW, Godbold JH, Koller W (1996) Effect of adding selegiline to levodopa in early, mild Parkinson’s disease: patients taking selegiline may have received more levodopa than necessary. BMJ [Letter] 312: 702–703

    CAS  Google Scholar 

  • Parkinson’s Study Group (1993) Efects of Tocopherol and deprenyl ont he progression of disability in early Parkinson’s disease. NEJN 328: 176–183

    Article  Google Scholar 

  • Patkar AA, Pae CU, Masand PS (2006) Transdermal selegiline: the new generation of monoamine oxidase inhibitors. CNS Spectr 11(5): 363–375

    PubMed  Google Scholar 

  • Reynolds GP, Elsworth JD, Blau K, Sandler M, Lees AJ, Stern GM (1978) Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol 6: 542–544

    PubMed  CAS  Google Scholar 

  • Ricci A, Mancini M, Strocchi P, Bongrani S, Bronzetti E (1992) Deficits in cholinergic neurotransmission markers induced by ethylcholine mustard aziridium (AF64A) in the rat hippocampus: sensitivity to treatment with the monoamine oxidase-B inhibitor l-deprenyl. Drugs Exptl Clin Res VIII(5): 163–171

    Google Scholar 

  • Schächter M, Marsden CD, Parkes JD, Jenner P, Testa B (1980) Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psychiatry 43: 1016–1021

    Article  PubMed  Google Scholar 

  • Szökő É, Magyar K (1995) Chiral separation of deprenyl and its major metabolites using cyclodextrin-modified capillary zone electrophoresis. J Chromatogr A 709(1): 157–162

    Article  Google Scholar 

  • Szökő É, Magyar K (1996) Enantiomer identification of the major metabolites of (—)-deprenyl in rat urine by capillary electrophoresis. Int J Pharmacol Adv 1(3): 320–328

    Google Scholar 

  • Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (—)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman RME (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (—)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47 Suppl 3: S171–S183

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Boulton AA, Cools AR, Kato AC, Tatton WG (2000) Neurorescuing effects of the GAPDH ligand CGP 3466B. J Neural Transm Suppl 60: 197–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Magyar, K., Szatmáry, I., Szebeni, G., Lengyel, J. (2007). Pharmacokinetic studies of (—)-deprenyl and some of its metabolites in mouse. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation