Strategies for Enhancing Tumor Immunogenicity (or how to transform a tumor cell in a Frankenstenian APC)

  • Chapter
Gene Therapy
  • 243 Accesses

Abstract

The immunological approach to cancer therapy springs from the observation that the onset and growth of a tumor are events so strictly connected with immune reactivity as to be markedly influenced by it. Significant tumor impairment should, thus, be achievable if changes can be induced in a few immune features of this relationship. The recent characterization of many tumor associated antigens (TAA) on human tumor cells [1] has provided concrete support for the concept of antitumor immunization. In addition, the frequent, persistent evidence of minimal residual disease after current treatments makes the immune approach highly relevant, since an immune memory may be able to suppress recurrences originating from the few neoplastic cells that remain after surgery or chemotherapy [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boon, T., Gajewski, T. F., Coulie, P. G. (1995) From defined tumor antigens to effective immunization? Immunol. Today 16: 334–36.

    Article  PubMed  CAS  Google Scholar 

  2. Longo, D. L. (1994) New clinical prospects. In: Forni, G., Foa’ R, Santoni, A., Frati, L. (eds), Cytokine-induced tumor immunogenicity. London: Academic Press, pp. 469–81.

    Google Scholar 

  3. Pardoll, D. M. (1994) Tumor antigens. A new look for the 1990s. Nature 369: 357–59.

    Article  PubMed  CAS  Google Scholar 

  4. Forni, G., Santoni, A. (1984) Immunogenicity of non-immunogenic tumors. J. Biol. Resp. Modi f. 3: 128–31.

    CAS  Google Scholar 

  5. Pekarek, L. A., Weichselbaum, R. R., Beckett, M. A. et al. (1993) Footprinting of individual tumours and their variants by constitutive cytokine expression patterns. Cancer Res. 53: 1978–81.

    PubMed  CAS  Google Scholar 

  6. Colombo, M. P., Modesti, A., Parmiani, B. et al. (1992) Perspectives in cancer research: local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Res. 52: 1–5.

    Google Scholar 

  7. Plescia, O. J., Smith, A. H., Grinwich, K. (1975) Subversion of immune system by tumor cells and role of prostaglandins. Proc. Natl. Acad. Sci. USA 72: 1848.

    Article  PubMed  CAS  Google Scholar 

  8. Mantovani, A. (1990) Tumor associated macrophages. Curr. Opin. Immunol. 2: 689–95.

    Article  CAS  Google Scholar 

  9. Prehn, R. T. (1972) The immune response as stimulator of tumor growth. Science 176: 170–73.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis, A. M. Jr., Cook, J. L. (1985) A new role for DNA virus early proteins in viral carcinogenensis. Science 227: 15–20.

    Article  PubMed  CAS  Google Scholar 

  11. Forni, G., Landolfo, S., Giovarelli, M. et al. (1982) Immune recognition of tumor cells in vivo. I. Role of H-2 gene products in T lymphocyte activation against minor histocompatibility antigens displayed by adenocarcinoma cells. Eur. J. Immunol. 12: 664–70.

    Article  PubMed  CAS  Google Scholar 

  12. Klein, J. (1986) Natural history of the Major Histocompatibility Complex. New York: J. Wiley and Sons.

    Google Scholar 

  13. Boon, T. (1985) Tumor variants: Immunogenic variants obtained by mutagen treatment of tumor cells. Immunol. Today 6: 307–10.

    Article  CAS  Google Scholar 

  14. Forni, G., Parmiani, G., Guarini, A. et al. (1994) Gene transfer in tumor therapy. Ann. Oncol. 5: 789–94.

    PubMed  CAS  Google Scholar 

  15. Bubenik, J. (1994) Utilization of IL-2 and Il-2 gene transfer for regional immunotherapy. In: Forni, G., Foa’ R, Santoni, A., Frati, L. (eds), Cytokine-induced tumor immunogenicity. London: Academic Press, pp. 113–131.

    Google Scholar 

  16. Forni, G., Giovarelli, M., Cavallo, F. et al. (1993) Cytokine-induced tumor immunogenicity: from exogenous cytokines to gene therapy. J. Immunother. 14: 253–57.

    Article  CAS  Google Scholar 

  17. Cavallo, E, Giovarelli, M., Gulino, A. et al. (1992) Role of neutrophils and CD4’ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfection. J. Immunol. 149: 3627–35.

    PubMed  CAS  Google Scholar 

  18. Roth, C., Delassus, S., Even, J. et al. (1994) Inhibition of tumor growth by histoincompatible cells expressing IL-2. In: Forni, G., Foa’ R, Santoni, A., Frati, L. (eds), Cytokine-induced tumor immunogenicity. London: Academic Press, pp. 163–181.

    Google Scholar 

  19. Musiani, P., Allione, A., Modica, A. et al. (1995) Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab. Invest. 74: 146–157.

    Google Scholar 

  20. Penick, E, Giovarelli, M., Colombo, M. P. et al. (1994) An efficient Th-2-type memory follows CD8’ lymphocyte driven and eosinophil mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J. Immunol. 153: 5659–73.

    Google Scholar 

  21. Giovarelli, M., Musiani, P., Modesti, A. et al. (1995) The local relelase of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody dependent immune memory. J. Immunol. 155: 3112–23.

    PubMed  CAS  Google Scholar 

  22. Hock, H., Dorsch, M., Kunzendorf, U. et al. (1993) Vaccination with tumor cells genetically engineered to produce different citokines: effectivity not superior to a classical adjuvant. Cancer Res. 53: 714–16.

    PubMed  CAS  Google Scholar 

  23. Allione, A., Consalvo, M., Nanni, P. et al. (1994) Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with IL2, IL4, IL6, IL7, IL10, TNFct, GM-CSF, and IFN7 gene or admixed with conventional adjuvants. Cancer Res. 54: 6022–26.

    PubMed  CAS  Google Scholar 

  24. Colombo, M. P., Forni, G. (1994) Cytokine gene transfer in tumor inhibition and tentative tumor therapy: Where are we now? Immunol. Today 15: 48–51.

    Article  PubMed  CAS  Google Scholar 

  25. Tepper, R. I., Mule’, J. J. (1994) Experimental and clinical studies of cytokine gene-modified tumor cells. Hum. Gene Ther. 5: 153–64.

    Article  PubMed  CAS  Google Scholar 

  26. Consalvo, M., Mullen, C. A., Modesti, A. et al. (1995) 5-Fluorocytosine-induced eradication of murine adenocarcinomas engineered to express the cytosine deaminase suicide gene requires host immune competence and leaves an efficient memory. J. Immunol. 154: 5302–12.

    Google Scholar 

  27. Matzinger, P. (1994) Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12: 991–1045.

    Article  PubMed  CAS  Google Scholar 

  28. Lafferty, K. J., Prowse, S. J., Simeonovic, C. J. et al. (1983) Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu. Rev. Immunol. 1: 143–59.

    Article  PubMed  CAS  Google Scholar 

  29. Mueller, D. L., Jenkins, M. K., Schwartz, R. H. (1989) Clonal expansion versus clonal inactivation: a costimulatory signalling pathway determines the outcome of T-lymphocyte antigen receptor occupancy. Annu. Rev. Immunol. 7: 445–61.

    Article  PubMed  CAS  Google Scholar 

  30. Bretscher, P., Cohn, M. (1970) A theory of self-nonself discrimination. Paralysis and induction involve the recognition of one and two determinants on an antigen respectively. Science 169: 1042–49.

    Article  PubMed  CAS  Google Scholar 

  31. Talmage, D. W., Woolnough, J. A., Hemmingsen, H. et al. (1977) Activation of cytotoxic T-lymphocytes by nonstimulating tumor cells and spleen factor(s). Proc. Natl. Acad. Sci. USA 90: 5687–92.

    Google Scholar 

  32. Chen, L., Linsley, P. S., Hellstrom, K. E. (1993) Costimulation of T-lymphocytes for tumor immunity. Immunol. Today 14: 483–86.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman, G., Freedman, A. S., Segil, J. M. et al. (1989) B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. 143: 2714–22.

    PubMed  CAS  Google Scholar 

  34. Freeman, G., Gray, G. S., Gimmi, C. D. et al. (1991) Structure, expression, and T-lymphocyte costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp. Med. 174: 625–31.

    Article  PubMed  CAS  Google Scholar 

  35. Vandergerghe, P., Delabie, J. De Boer, M. et al. (1993) In situ expression of B7/BB1 on antigen presenting cells and activated B cells: an immunohistochemical study. Int. Immunol. 3: 229–36.

    Google Scholar 

  36. Linsley, P. S., Brady, W., Grosmarie, L. et al. (1991) Binding of the B cell activation B7 to CD28 costimulates T-lymphocyte proliferation and interleukin 2 mRNA accumulation J. Exp. Med. 173: 721–28.

    Article  PubMed  CAS  Google Scholar 

  37. Koulova, L. K., Clark, E. A., Shu, G. et al. (1991) The CD28 ligand B7/BB1 provides the costimulatory signal for alloactivation of CD4’ T-lymphocytes. J. Exp. Med. 173: 759–64.

    Article  PubMed  CAS  Google Scholar 

  38. Azuma, M., Cayabyab, M., Phillips, J. H. et al. (1993) Requirements for CD28-dependent T-lymphocyte-mediated cytotoxicity. J. Immunol. 150: 2091–97.

    PubMed  CAS  Google Scholar 

  39. Townsend Sa, Allison JA (1993) Tumor rejection after direct costimulation of CD8’ T-lymphocytes by B7-transfected melanoma cells. Science (Wash. DC) 259: 368–71.

    Article  CAS  Google Scholar 

  40. Chen, L., Ashe, S., Brady, W. A. et al. (1992) Costimulation of antitumor immunity by the B7 counterreceptor for T lymphocyte molecules CD28 and CTLA4. Cell 71: 1093–104.

    Article  PubMed  CAS  Google Scholar 

  41. Baskar, S., Ostrand-Rosenberg, S., Nabavi, N. et al. (1993) Constitutive expressin of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA 90: 5687–95.

    Article  PubMed  CAS  Google Scholar 

  42. Ramarathinam, L., Caste, M., Wu, Y. et al. (1994) T-lymphocyte costimulation by B7/BB1 induces CD8 T-lymphocyte dependent tumor rejection: an important role of B7/BB1 in the induction, recruitment, and effector function of antitumor R cells. J. Exp. Med. 179: 1205–14.

    Article  PubMed  CAS  Google Scholar 

  43. Chen, L., McGowan, P., Ashe, S. et al. (1994) Tumor immunogenicity determines the effects of B7 costimulation on T-lymphocyte-mediated tumor immunity. J. Exp. Med. 179: 523–32.

    Article  PubMed  CAS  Google Scholar 

  44. Cavallo, F., Martin-Fontecha, A., Bellone, M. et al. (1995) Coexpression of B7–1 and ICAM-1 on tumors is required for rejection and establishment of a memory response. Eur. J. Immunol. 25: 1154–62.

    Article  PubMed  CAS  Google Scholar 

  45. Hodge, J. W., Abrams, S., Schlom, J. et al. (1994) Induction of antitumor immunity by recombinant vaccinia viruses expressing B7–1 or B7–2 costimulatory molecules. Cancer Res. 54: 5552–55.

    PubMed  CAS  Google Scholar 

  46. Yang, G., Hellstrom, K. E., Hellstrom, I. et al. (1995) Antitumor immunity elicited by tumror cells transfected with B7–2, a second ligand for CD28/CTLA4 costimulatory molecule. J. Immunol. 154: 2794–800.

    PubMed  CAS  Google Scholar 

  47. Martin-Fontecha, A., Cavallo, F., Bellone, M. et al. (1996) Heterogenous effects of B7–1 and B7–2 in the induction of both protective and therapeutic anti tumor immunity against different mouse tumors. Eur. J. Immunol. 26: 1851–1859.

    Article  PubMed  CAS  Google Scholar 

  48. Bluestone, A. J. (1995) New perspective of CD28–B7-mediated T-lymphocyte costimulation. Immunity 2: 555–59.

    Article  PubMed  CAS  Google Scholar 

  49. Thompson, C. B. (1995) Distinct role for the costimulatory ligands B7–1 and B7–2 in T helper differentiation? Cell 81: 979–82.

    Article  PubMed  CAS  Google Scholar 

  50. Di Marco AT, Franceschi, C., Prodi, G. (1972) Helper activity of histocompatibility antigens on cell-mediated immunity. Eur. J. Immunol. 2: 240–45.

    Article  PubMed  Google Scholar 

  51. Barbanti-Brodano, G., Di Marco AT, Franceschi, C. et al. (1974) Increased immunogenicity of TSTA on heterokaryocytes of syngeneic tumoral and allogeneic normal cells. Experientia 30: 947–51.

    Article  PubMed  CAS  Google Scholar 

  52. Cohen, I. R., Livnat, S. (1976) The cell-mediate immune response: Interactions of initiator and recruited T lymphocytes. Transplantat. Rev. 29: 24–35.

    CAS  Google Scholar 

  53. Giovarelli, M., Santoni, A. and G. Forni (1985) Alloantigen-activated lymphocytes from mice bearing a spontaneous “non-immunogenic” adenocarcinoma inhibit its grown by recruiting host immunoreactivity. J. Immunol. 133: 3596–3603.

    Google Scholar 

  54. Nanda, K. K., Sercarz, E. E. (1995) Induction of anti-self-immunity to cure cancer. Cell 82: 13–7.

    Article  PubMed  CAS  Google Scholar 

  55. Baskar, S., Glimcher, L., Nabavi, N. et al. (1995) Major Histocompatibility Complex class II’ B7–1 tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J. Exp. Med. 181: 619–29.

    Article  PubMed  CAS  Google Scholar 

  56. Roth, C., Rochlitz, C., Kourilsky, P. (1994) Immune response against tumors. Adv. Immunol. 37: 281–351.

    Article  Google Scholar 

  57. Lollini, P. L., De Giovanni, C., Landuzzi, L. et al. (1995) Transduction of genes coding for a histocompatibility (MHC) antigen and for its physiological inducer gamma-interferon in the same cell. Efficient MHC expression and inhibition of tumor and metastasis growth. Hum Gene Ther. 6: 743–52.

    Article  PubMed  CAS  Google Scholar 

  58. Ostrand-Rosenberg, S., Garcia, E. P., Roby, C. A. et al. (1991) Influence of major histocompatibility complex class I, class II and TLA genes on tumor rejection. Semin Cancer Biol 2: 311–19.

    PubMed  CAS  Google Scholar 

  59. Plautz, G. E., Nabel, G. J. (1994) Direct gene transfer for immunotherapy of cancer. In: Forni, G., Foa’ R, Santoni, A., Frati, L. (eds), Cytokine-induced tumor immunogenicity. London: Academic Press, pp. 345–364.

    Google Scholar 

  60. Itaya, T., Yamagiwa, S., Okada, E. et al. (1987) Xenogenization of a mouse lung carcinoma (3LL) by transfection with an allogeneic class I major histocompatibility complex gene (H2-Ld). Cancer Res. 47: 3136–40.

    PubMed  CAS  Google Scholar 

  61. Feldman, M., Eisenbach, L. (1991) MHC class I genes controlling the metastatic phenotype of tumor cells. Semin. Cancer Biol. 2: 337–46.

    PubMed  CAS  Google Scholar 

  62. Lollini, P. L., Nanni, P. (1995) Minimal requirements for characterization of cytokine gene-transduced tumor cells: A proposal. J. Nat. Cancer Inst. 87: 1718–1718.

    Google Scholar 

  63. Nabel, G. J., Chang, A. E., Nabel, E. G. et al. (1994) Clinical protocol: Immunotherapy for cancer by direct gene transder into tumors. Hum. Gen. Ther. 5: 57–77.

    Article  CAS  Google Scholar 

  64. Cascinelli, N., Foa’, R., Parmiani, G. (1994) Clinical protocol: Active immunization of metastatic melanoma patients with interleukin-4 transduced, allogeneic melanoma cells. A phase I-II study. Hum. Gene Ther. 5: 1059–64.

    Article  PubMed  CAS  Google Scholar 

  65. Kim, T. S., Russel, S. J., Collins, M. K. et al. (1993) Immunization with interleukin-2-secreting allogeneic mouse fibroblasts expressing melanoma-associated antigens prolongs the survival of mice with melanoma. Int. J. Cancer 55: 865–72.

    Article  PubMed  CAS  Google Scholar 

  66. Lollini, P. L., Bosco, M. C., Cavallo, F. et al. (1993) Inhibition of tumor growth and enhancement of metastasis after transfection of the gamma-interferon gene. Int. J. Cancer 55: 320–29.

    Article  PubMed  CAS  Google Scholar 

  67. Lollini, P. L., Bosco, M. C., De Giovanni, C. et al. (1994) Reduced oncogenicity and enhanced metastatic spread of IFN-gamma transfected tumor cells: therapeutic implications. In: Forni, G., Foa’ R, Santoni, A., Frati, L. (eds), Cytokine-induced tumor immunogenicity. London: Academic Press, pp. 345–64.

    Google Scholar 

  68. Sunday, M. E., Isselbacher, K. J., Gattoni-Celli, S. et al. (1989) Altered growth of a human neuroendocrine carcinoma line after transfection of a major histocompatibility complex class I gene Proc. Natl. Acad. Sci. USA 86: 4700–704.

    Article  PubMed  CAS  Google Scholar 

  69. De Giovanni, C., Nicoletti, G., Sensi, M. et al. (1994) H-2Kb and H-2Db gene transfections in B16 melanoma differently affect non-immunological properties relevant to the metastatic process. Involvement of integrin molecules. Int. J. Cancer 59: 269–74.

    Article  PubMed  Google Scholar 

  70. Gorelik, E., Kim, M., Duty, L. et al. (1993) Control of metastatic properties of BL6 melanoma cells by H-2Kb gene: immunological and nonimmunological mechanisms. Clin. Exp. Metastasis 11: 439–52.

    Article  PubMed  CAS  Google Scholar 

  71. Chia, K. Y., Lim, S. P., Oei, A. A. et al. (1994) Acquisition of immunogenicity by AKR leukemic cells following DNA-mediated gene transfer is associated with the reduction of constitutive reactive superoxide radicals. Int. J. Cancer 57: 216–23.

    Article  PubMed  CAS  Google Scholar 

  72. Xu, F., Carlos, T., Li, M. et al. (1998) Inhibition of VLA-4 and up-regulation of TIMP-1 expression in B16BL6 melanoma cells transfected with MHC class I genes. Clin. Exp. Metastasis 16: 358–370.

    Article  PubMed  CAS  Google Scholar 

  73. Armstrong, T. D., Clements, V. K., Martin, B. K. et al. (1997) Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proc. Natl. Acad. Sci. USA 94: 6886–6891.

    Article  PubMed  CAS  Google Scholar 

  74. Nanni, P., Forni, G., Lollini, P. L. (1998) Cytokine gene therapy: hopes and pitfalls. Ann. Oncol.; in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Cavallo, F., Nanni, P., Dellabona, P., Lollini, P.L., Casorati, G., Forni, G. (1999). Strategies for Enhancing Tumor Immunogenicity (or how to transform a tumor cell in a Frankenstenian APC). In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation