Performance of the Complete Travel-time Equation of State at Simultaneous High Pressure and Temperature

  • Chapter
Experimental Techniques in Mineral and Rock Physics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 273 Accesses

Abstract

The complete travel-time equation of state (CT-EOS) is presented by utilizing thermodynamics relations, such as;

$${\begin{array}{*{20}{c}} {{K_T} = {K_S}(1 + x\gamma T){^1},}&{\gamma = \frac{{x{K_S}}}{{\rho {C_P}}},\frac{{\partial {C_P}}}{{\partial P}})} \end{array}_T} = \frac{T}{\rho }{[{x^2} + \frac{{\partial x}}{{\partial T}})_P}],etc.$$

The CT-EOS enables us to analyze ultrasonic experimental data under simultaneous high pressure and high temperature without introducing any assumption, as long as the density, or thermal expansivity, and heat capacity are also available as functions of temperature at zero pressure. The performance of the CT-EOS was examined by using synthesized travel-time data with random noise of 10−5 and 10−4 amplitude up to 4 GPa and 1500 K. Those test conditions are to be met with the newly developed GHz interferometry in a gas medium piston cylinder apparatus. The results suggest that the combination of the CT-EOS and accurate experimental data (10−4 in travel time) can determine thermodynamic and elastic parameters, as well as their derivatives with unprecedented accuracy, yielding second-order pressure derivatives (∂2 M/∂P 2) of the elastic moduli as well as the temperature derivatives of their first-order pressure derivatives (∂2 M/∂PT). The completeness of the CT-EOS provides an unambiguous criterion to evaluate the compatibility of empirical EOS with experimental data. Furthermore because of this completeness, it offers the possibility of a new and absolute pressure calibration when X-ray (i. e., volume) measurements are made simultaneously with the travel-time measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, D. L., Theory of the Earth (Blackwell Scientific Publications, Boston 1989) pp. 91–92.

    Google Scholar 

  • Anderson, O. L., Isaak, D. L., and Oda, H. (1991), Thermoelastic Parameters for Six Minerals at High Temperature, J. Geophys. Res. 96, 18,037–18,046.

    Article  Google Scholar 

  • Bassett, W. A., Shimizu, H., and Brody, E. M, Pressure dependence of elastic moduli of forsterite by Brillouin scattering in diamond cell. In High-pressure Research in Geophysics (eds. Akimoto, S., and Manghanani, M. H.) (Center for Academic Publications Japan, Tokyo 1982) pp. 115–124.

    Chapter  Google Scholar 

  • Brown, J. M., Slutsky, L. J., Abramson, E. (1992), Applications of Impulsive Stimulated Scattering in Mineral Physics: Elasticity, Equation of State, Thermal Diffusivity, and Structural Relaxation, Eos Trans. Amer. Geophys. Union, Fall Meeting Supplement, 555.

    Google Scholar 

  • Brown, J. M., Slutsky, L. J., Nelson, K. A., and Cheng, L. T. (1989), Single-crystal Elastic Constants for San Carlos Peridot: An Application of Impulsive Stimulated Scattering, J. Geophys. Res. 94, 9485–9492.

    Article  Google Scholar 

  • Dandekar, D. P. (1970), Iterative Procedure to Estimate the Values of Elastic Constants of a Cubic Solid at High Pressure from the Sound Wave Velocity Measurements, J. Appl. Phys. 41, 667–672.

    Article  Google Scholar 

  • Davies, G. F. (1974), Effective Elastic Moduli under Hydrostatic Stress—I. Quasi-harmonic Theory, J. Phys. Chem. Solids 35, 1513–1520.

    Article  Google Scholar 

  • Getting, I. C., and Kennedy, G. C. (1970), Effect of Pressure on the emf of Chromel-alumel and Platinum-platinum 10% Rhodium Thermocouples, J. Appl. Phys. 41, 4522–4562.

    Article  Google Scholar 

  • Getting, I. C., and Spetzler, H. (1993), Gas-charged piston-cylinder apparatus for pressures to 4GPa. In High-pressure Science and Technology (eds. Schmidt, S. C., Shaner, J. W., Samara, G. A., and Ross, M.) (American Institute of Physics, Woodbury, New York 1993) pp. 1581.

    Google Scholar 

  • Goto, T., and Anderson, O. L. (1988), An Apparatus for Measuring Elastic Constants of Single Crystals by a Resonance Technique up to 1825 K, Rev. Sci. Instrum. 59, 1405–1408.

    Article  Google Scholar 

  • Isaak, D. G., Anderson, O. L., Goto, T., and Suzuki, I. (1989), Elasticity of Single-crystal Forsterite Measured to 1700 K, J. Geophys. Res. 94, 5895–5906.

    Article  Google Scholar 

  • Jackson, I., and Niesler, H., The elasticity of periclase to 3 GPa and some geophysical implications. In High-pressure Research in Geophysics (eds. Akimoto, S., and Manghnani, M. H.) (Center for Academic Publications Japan, Tokyo 1982) pp. 93–113.

    Chapter  Google Scholar 

  • Jackson, I., Niesler, H., and Weidner, D. J. (1981), Explicit Correction of Ultrasonically Determined Elastic Wave Velocities for Transducer-bond Phase Shift, J. Geophys. Res. 86, 3736–3748.

    Article  Google Scholar 

  • Jeanloz, R., Differential finite strain equation of state. In High-pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y., and Manghnani, M. H.) (TERRAPUB, Tokyo/American Geophysical Union, Washington, D.C. 1992) pp. 147-156.

    Google Scholar 

  • Kittel, C., Introduction to Solid State Physics, 6th edition (John Wiley & Sons, New York 1986) pp. 83–98.

    Google Scholar 

  • Mao, H. K., Hemley, R. J., Fei, Y., Shu, J. F., Chen, L. C., and Bassett, W. A. (1991), Effect of Pressure, Temperature, and Composition on Lattice Parameters and Density of (Fe, Mg)SiO 3-Perovskites to 30GPa, J. Geophys. Res. 96, 8069–8079.

    Article  Google Scholar 

  • Niesler, H., Jackson, I., and Edwin, C. M. (1988), Calibration and Inter comparison of Minalpha and Manganin Resistance Pressure Gauge to 3 GPa, High Temp.-High Pressures 20, 495–508.

    Google Scholar 

  • Spetzler, H., Chen, G., Whitehead, S., and Getting, I. C. (1993), A New Ultrasonic Interferometer for the Determination of Equation of State Parameters of Sub-millimeter Single Crystals, Pure Appl. Geophys., 141, 341–377.

    Article  Google Scholar 

  • Spetzler, H., Sammis, C. G., and O’Connell, R. J. (1972), Equation of State of NaCl: Ultrasonic Measurements to 8 kbar and 800°C and Static Lattice Theory, J. Phys. Chem. Solids 33, 1727–1750.

    Article  Google Scholar 

  • Suzuki, I. (1975), Thermal Expansion of Periclase and Olivine, and their Anharmonic Properties, J. Phys. Earth 23, 145–159.

    Article  Google Scholar 

  • Wang, Y., Weidner, D. J., Liebermann, R. C., Liu, X., Ko, J., Vaughan, M. T., Zhao, Y., Yeganen-Haeri, A., and Pacalo, R. E. G. (1991), Phase Transition and Thermal Expansion of MgSiO 3 Perovskite, Science 251, 410–413.

    Article  Google Scholar 

  • Watanabe, H. (1982), Thermomechanical properties of synthetic high-pressure compounds relevant to the earth’s mantle. In High-pressure Research in Geophysics (eds. Akimoto, S., and Manghnani, M. H.) (Center for Academic Publications Japan, Tokyo 1982) pp. 441–464.

    Chapter  Google Scholar 

  • Weidner, D. J. (1975), Elasticity of Microcrystals, Geophys. Res. Lett. 2, 189–192.

    Article  Google Scholar 

  • Yoneda, A. (1990), Pressure Derivatives of Elastic Constants of Single Crystal MgO and MgAl 2O4, J. Phys. Earth 38, 19–55.

    Article  Google Scholar 

  • Yoneda, A., Spetzler, H., and Getting, I. (1993), Implication of the complete travel time equation of state for a new pressure scale. In High-pressure Science and Technology (eds. Schmidt, S. C., Shaner, J. W., Samara, G. A., and Ross, M.) (American Institute of Physics, Woodbury, New York 1993) pp. 1609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Spetzler, H.A., Yoneda, A. (1993). Performance of the Complete Travel-time Equation of State at Simultaneous High Pressure and Temperature. In: Liebermann, R.C., Sondergeld, C.H. (eds) Experimental Techniques in Mineral and Rock Physics. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5108-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5108-4_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-5028-4

  • Online ISBN: 978-3-0348-5108-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation