LBKT: A LSTM BERT-Based Knowledge Tracing Model for Long-Sequence Data

  • Conference paper
  • First Online:
Generative Intelligence and Intelligent Tutoring Systems (ITS 2024)

Abstract

The field of Knowledge Tracing (KT) aims to understand how students learn and master knowledge over time by analyzing their historical behaviour data. To achieve this goal, many researchers have proposed KT models that use data from Intelligent Tutoring Systems (ITS) to predict students’ subsequent actions. However, with the development of ITS, large-scale datasets containing long-sequence data began to emerge. Recent deep learning based KT models face obstacles such as low efficiency, low accuracy, and low interpretability when dealing with large-scale datasets containing long-sequence data. To address these issues and promote the sustainable development of ITS, we propose a LSTM BERT-based Knowledge Tracing model for long sequence data processing, namely LBKT, which uses a BERT-based architecture with a Rasch model-based embeddings block to deal with different difficulty levels information and an LSTM block to process the sequential characteristic in students’ actions. LBKT achieves the best performance on most benchmark datasets on the metrics of ACC and AUC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 56.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 70.61
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sites.google.com/site/assistmentsdata/home.

  2. 2.

    https://sites.google.com/site/assistmentsdata/home.

  3. 3.

    https://pslcdatashop.web.cmu.edu/KDDCup.

  4. 4.

    https://github.com/riiid/ednet.

  5. 5.

    https://pslcdatashop.web.cmu.edu/Files?datasetId=1275.

  6. 6.

    https://www.kaggle.com/code/datakite/riiid-answer-correctness.

References

  1. Abdelrahman, G., Wang, Q., Nunes, B.: Knowledge tracing: a survey. ACM Comput. Surv. 55(11), 1–37 (2023)

    Article  Google Scholar 

  2. Abdelrahman, G., Wang, Q., Nunes, B.P.: Knowledge tracing: a survey. ACM Comput. Surv. 55, 1–37 (2022)

    Article  Google Scholar 

  3. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  4. Chang, H.S., Hsu, H.J., Chen, K.T.: Modeling exercise relationships in e-learning: a unified approach. In: EDM, pp. 532–535 (2015)

    Google Scholar 

  5. Choi, Y., et al.: EdNet: a large-scale hierarchical dataset in education. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_13

    Chapter  Google Scholar 

  6. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994). https://doi.org/10.1007/BF01099821

    Article  Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. ar**v:1810.04805 (2018)

  8. Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge tracing. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2330–2339 (2020)

    Google Scholar 

  9. Jiang, Z.H., Yu, W., Zhou, D., Chen, Y., Feng, J., Yan, S.: ConvBERT: improving BERT with span-based dynamic convolution. Adv. Neural. Inf. Process. Syst. 33, 12837–12848 (2020)

    Google Scholar 

  10. Käser, T., Klingler, S., Schwing, A.G., Gross, M.: Dynamic Bayesian networks for student modeling. IEEE Trans. Learn. Technol. 10, 450–462 (2017)

    Article  Google Scholar 

  11. Lee, U., Park, Y., Kim, Y., Choi, S., Kim, H.: MonacoBERT: monotonic attention based convBERT for knowledge tracing. ar**v preprint ar**v:2208.12615 (2022)

  12. Li, Z.: Deep reinforcement learning approaches for technology enhanced learning. Ph. D. thesis, Durham University (2023)

    Google Scholar 

  13. Li, Z., Jacobsen, M., Shi, L., Zhou, Y., Wang, J.: Broader and deeper: a multi-features with latent relations BERT knowledge tracing model. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds.) European Conference on Technology Enhanced Learning, pp. 183–197. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42682-7_13

  14. Li, Z., Shi, L., Cristea, A., Zhou, Y., **ao, C., Pan, Z.: SimStu-transformer: a transformer-based approach to simulating student behaviour. In: Rodrigo, M.M., Matsuda, N., Cristea, A.I., Dimitrova, V. (eds.) International Conference on Artificial Intelligence in Education, pp. 348–351. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11647-6_67

  15. Li, Z., Shi, L., Cristea, A.I., Zhou, Y.: A survey of collaborative reinforcement learning: interactive methods and design patterns. In: Proceedings of the 2021 ACM Designing Interactive Systems Conference, pp. 1579–1590 (2021)

    Google Scholar 

  16. Li, Z., Shi, L., Wang, J., Cristea, A.I., Zhou, Y.: Sim-GAIL: a generative adversarial imitation learning approach of student modelling for intelligent tutoring systems. Neural Comput. Appl. 35(34), 24369–24388 (2023)

    Article  Google Scholar 

  17. Li, Z., Shi, L., Zhou, Y., Wang, J.: Towards student behaviour simulation: a decision transformer based approach. In: International Conference on Intelligent Tutoring Systems, pp. 553–562. Springer (2023). https://doi.org/10.1007/978-3-031-32883-1_49

  18. Liu, Y., Zhou, J., Lin, W.: Efficient attentive knowledge tracing for long-tail distributed records. In: 2021 IEEE/ACIS 6th International Conference on Big Data, Cloud Computing, and Data Science (BCD), pp. 104–109. IEEE (2021)

    Google Scholar 

  19. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. ar**v preprint ar**v:1907.06837 (2019)

  20. Pavlik Jr, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis–a new alternative to knowledge tracing. In: Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, Proceedings of the 14th International Conference on Artificial Intelligence in Education, AIED 2009, July 6-10, 2009, Brighton, UK, vol. 200, pp. 531–538 (2009)

    Google Scholar 

  21. Rasch, G.: Probabilistic Models for Some Intelligence and Attainment Tests. (1993)

    Google Scholar 

  22. Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B., Choi, Y.: Saint+: integrating temporal features for EdNet correctness prediction. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 490–496 (2021)

    Google Scholar 

  23. Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1441–1450 (2019)

    Google Scholar 

  24. Sun, X., Zhao, X., Ma, Y., Yuan, X., He, F., Feng, J.: Muti-behavior features based knowledge tracking using decision tree improved DKVMN. In: Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6 (2019)

    Google Scholar 

  25. Tiana, Z., Zhengc, G., Flanaganb, B., Mic, J., Ogatab, H.: BEKT: deep knowledge tracing with bidirectional encoder representations from transformers. In: Proceedings of the 29th International Conference on Computers in Education (2021)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Villano, M.: Probabilistic student models: Bayesian belief networks and knowledge space theory. In: International Conference on Intelligent Tutoring Systems, pp. 491–498. Springer (1992). https://doi.org/10.1007/3-540-55606-0_58

  28. Wang, J., Ivrissimtzis, I., Li, Z., Shi, L.: Comparative efficacy of 2D and 3D virtual reality games in American sign language learning. In: The 31st IEEE Conference on Virtual Reality and 3D User Interfaces. Newcastle University (2024)

    Google Scholar 

  29. Wang, J., Ivrissimtzis, I., Li, Z., Shi, L.: Impact of personalised AI chat assistant on mediated human-human textual conversations: exploring female-male differences. In: Companion Proceedings of the 29th International Conference on Intelligent User Interfaces, pp. 78–83 (2024)

    Google Scholar 

  30. Wang, J., Ivrissimtzis, I., Li, Z., Zhou, Y., Shi, L.: Exploring the potential of immersive virtual environments for learning American sign language. In: European Conference on Technology Enhanced Learning, pp. 459–474. Springer (2023). https://doi.org/10.1007/978-3-031-42682-7_31

  31. Wang, J., Ivrissimtzis, I., Li, Z., Zhou, Y., Shi, L.: User-defined hand gesture interface to improve user experience of learning American sign language. In: International Conference on Intelligent Tutoring Systems, pp. 479–490. Springer (2023). https://doi.org/10.1007/978-3-031-32883-1_43

  32. Zhang, X., Zhang, J., Lin, N., Yang, X.: Sequential self-attentive model for knowledge tracing. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12891, pp. 318–330. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86362-3_26

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through a Turing AI Fellowship (EP/V022067/1) on Citizen-Centric AI Systems (https://ccais.ac.uk/) and through the AutoTrust Platform Grant (EP/R029563/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Yang, J., Wang, J., Shi, L., Feng, J., Stein, S. (2024). LBKT: A LSTM BERT-Based Knowledge Tracing Model for Long-Sequence Data. In: Sifaleras, A., Lin, F. (eds) Generative Intelligence and Intelligent Tutoring Systems. ITS 2024. Lecture Notes in Computer Science, vol 14799. Springer, Cham. https://doi.org/10.1007/978-3-031-63031-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63031-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63030-9

  • Online ISBN: 978-3-031-63031-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation