Phenomenological Modelling of the Nonlinear Flexion–Extension Movement of Human Lower Limb Joints

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2024)

Abstract

In this paper we obtain a mathematical model for the flexion–extension (flex-ext) motion of the human lower limb joints in the sagittal plane. This model is composed of a system of differential equations based on quadratic polinoms, obtained from the experimental data collected during walking. Numerical integrations of the mathematical model and the construction of the state space by utilizing numerical solutions and the comparison with the state space obtained from experimental data are obtained. The trajectories of the solution of the phenomenological model are very close to the result of the measurements of the flex-ext angles of the Subject’s joints before the pre-processing stage, but they are narrower, more similar with those obtained after pre-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilborn, R., Mangel, M.: The ecological detective: confronting models with data 28 (1997)

    Google Scholar 

  2. Brunton, S., et al.: Discovering governing equations from data: sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113, 3932–3937 (2015)

    Article  MathSciNet  Google Scholar 

  3. Breeden, J., Hübler, A.: Reconstructing equations of motion from experimental data with unobserved variables. Phys. Rev. A 42, 5817–5826 (1990)

    Article  MathSciNet  Google Scholar 

  4. Baker, G., Gollub, J., Blackburn, J.: Inverting chaos: extracting system parameters from experimental data. Chaos 6, 528–533 (1997)

    Article  MathSciNet  Google Scholar 

  5. Tarnita, D., et al.: Applications of nonlinear dynamics to human knee movement on plane &inclined treadmill. In: New Trends in Medical & Service Robots, vol. 39. Springer, pp. 59–73 (2016)

    Google Scholar 

  6. Tarnita, D., Geonea, I.: Numerical Simulations and Experimental Human Gait Analysis Using Wearable Sensors, pp. 289–304. New Trends in Medical and Service Robots, Springer (2018)

    Google Scholar 

  7. Major, Z.Z. et al.: The impact of robotic rehabilitation on the motor system in neurological diseases. A multimodal neurophysiological approach. Int. J. Environ. Res. Public Health 17, 6557 (2020)

    Google Scholar 

  8. Pisla, D., et al.: A parallel robot with torque monitoring for brachial monoparesis rehabilitation tasks. Appl. Sci. 11, 9932 (2021)

    Article  Google Scholar 

  9. Pisla, D., et al.: Development of a control system and functional validation of a parallel robot for lower limb rehabilitation. Actuators 10, 277 (2021)

    Article  Google Scholar 

  10. Tarnita, D. et al.: Experimental characterization of human walking on stairs applied to humanoid dynamics. In: Advances in Robot Design and Intelligent Control, RAAD16, pp. 293–301. Springer (2017)

    Google Scholar 

  11. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, 1981, pp. 366–381. Warwick (1980)

    Google Scholar 

  12. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20(2–3), 217–236 (1986)

    Article  MathSciNet  Google Scholar 

  13. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  14. Kennel, M.B., et al.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  15. Tarnita, D., Marghitu, D.-B.: Nonlinear dynamics of normal and osteoarthritic human knee. In: Proceedings of the Romanian Academy, pp. 353–360 (2017)

    Google Scholar 

  16. Golyandina, N. et al.: Singular Spectrum Analysis with R (2018)

    Google Scholar 

  17. Golyandina, N., Korobeynikov, A.: Basic singular spectrum analysis and forecasting with R. Comput. Stat. Data Anal. 71, 934–954 (2014)

    Article  MathSciNet  Google Scholar 

  18. Georgescu, M.: Contributions on the human gait stability. Ph.D. thesis, Craiova (2021)

    Google Scholar 

  19. Hershey, D.: Finite Difference Calculus Transport Analysis, pp. 299–326. Springer, Boston (1973)

    Google Scholar 

  20. Kahle, D.: Mpoly: multivariate polynomials in R. R J. 5, 181–187 (2013)

    Article  Google Scholar 

  21. Mourrain, B., Pan, V.Y.: Multivariate polynomials, duality, and structured matrices. J. Complex. 16(1), 110–180 (2000)

    Article  MathSciNet  Google Scholar 

  22. Wei-Dong, L., et al.: Global vector-field reconstruction of nonlin dynamical systems from a time series with SVD method validation with Lyap exp. Chinese Phys. 12, 1366 (2003)

    Article  Google Scholar 

  23. Huffaker, R., Bittelli, M., Rosa, R.: Nonlinear time series analysis with R (2018)

    Google Scholar 

  24. Zhang, T., Yang, B.: An exact approach to ridge regression for big data. Comput. Stat. 32(3), 909–928 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    Article  MathSciNet  Google Scholar 

  26. Gauraha, N.: Introduction to the LASSO. Resonance 23(4), 439–464 (2018)

    Article  Google Scholar 

  27. Yazdi, M., Golilarz, N.A., Nedjati, A., Adesina, K.A.: An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis. Neural Comput. Appl. 33(13), 7913–7928 (2021)

    Article  Google Scholar 

  28. Ekstrøm, C.T.: MESS: miscellaneous esoteric statistical scripts (2020). https://cran.r-project.org/web/packages/MESS/index.html. Accessed 10 Jan 2020

  29. Hastie, T., Qian, J., Tay, K.: An Introduction to glmnet (2020). https://glmnet.stanford.edu, https://glmnet.stanford.edu/articles/glmnet.html. Accessed 12 Jan 2020

  30. Soetaert, K., Petzoldt, T., Setzer, R.: Package deSolve: solving initial value differential equations in R. R J. 2, 5–15 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Tarniță .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgescu, M., Tarniță, D., Berceanu, C., Geonea, I., Tarniță, DN. (2024). Phenomenological Modelling of the Nonlinear Flexion–Extension Movement of Human Lower Limb Joints. In: Pisla, D., Carbone, G., Condurache, D., Vaida, C. (eds) Advances in Service and Industrial Robotics. RAAD 2024. Mechanisms and Machine Science, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-031-59257-7_18

Download citation

Publish with us

Policies and ethics

Navigation