Vitrification of Human Spermatozoa: Effect of Cryoprotectants and Cooling Methods on Sperm Cryopreservation

  • Chapter
  • First Online:
Cryopreservation in Assisted Reproduction

Abstract

Cryopreservation is a procedure to freeze several types of cells and tissues, documented since the early nineteenth century. The conventional slow-freezing methods of human spermatozoa are widely used in ART, but the preferred expectations have not been achieved. These methodologies promote dehydration of their intracellular water through cryoprotectants (CPA) to avoid ice formation and physical cell damage. However, these procedures imply an increased concentration of freezing media, triggering the possibility of osmotic shock and intracellular and extracellular ice formation, leading to mechanical damage and cell death.

Spermatozoa vitrification has been proposed as an alternative method, leading to the formation of a glass stage avoiding ice crystal formation instead of procedures that try to control a reduced ice formation as slow-freezing methods. In our group, we confirm that permeable cryoprotectant-free vitrification preserves sperm quality better than slow freezing. The vitrification technique is based on the ultrarapid cooling of human spermatozoa by directly into liquid nitrogen with or without the use of permeable CPA; lethal intracellular ice crystal formation and harmful effects of high salt concentration are prevented, reducing the damage on spermatozoa functions, making this procedure much less labor intensive, quicker, and simpler in application than conventional freezing. Therefore, human spermatozoa vitrification demonstrated superior potential on sperm cryopreservation, but the procedure requires further optimization.

This chapter focuses on human spermatozoa vitrification, describing the current vitrification methodologies in use, advantages over other cryopreservation methods, and clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, et al. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction. 2008;136(2):167–73. https://doi.org/10.1530/rep-07-0463.

    Article  CAS  PubMed  Google Scholar 

  2. Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online. 2003;6(2):191–200. https://doi.org/10.1016/S1472-6483(10)61710-5.

    Article  PubMed  Google Scholar 

  3. Endo Y, Fujii Y, Shintani K, Seo M, Motoyama H, Funahashi H. Simple vitrification for small numbers of human spermatozoa. Reprod Biomed Online. 2012;24(3):301–7. https://doi.org/10.1016/j.rbmo.2011.11.016.

    Article  CAS  PubMed  Google Scholar 

  4. Aizpurua J, Medrano L, Enciso M, Sarasa J, Romero A, Fernández MA, et al. New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod. 2017;32(10):2007–15. https://doi.org/10.1093/humrep/dex281.

    Article  CAS  PubMed  Google Scholar 

  5. Isachenko V, Rahimi G, Mallmann P, Sanchez R, Isachenko E. Technologies of cryoprotectant-free vitrification of human spermatozoa: asepticity as criterion of effectiveness. Andrology. 2017;5(6):1055–63. https://doi.org/10.1111/andr.12414.

    Article  CAS  PubMed  Google Scholar 

  6. **n M, Siddique MAM, Dzyuba B, Cuevas-Uribe R, Shaliutina-Kolešová A, Linhart O. Progress and challenges of fish sperm vitrification: a mini review. Theriogenology. 2017;98(Supplement C):16–22. https://doi.org/10.1016/j.theriogenology.

    Article  PubMed  Google Scholar 

  7. Li Y-X, Zhou L, Lv M-Q, Ge P, Liu Y-C, Zhou D-X. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019;233:84–92. https://doi.org/10.1016/j.ejogrb.

    Article  CAS  PubMed  Google Scholar 

  8. Moskovtsev S, Lulat A, Librach C. Cryopreservation of human spermatozoa by vitrification vs. slow freezing: Canadian experience. In: Current frontiers in cryobiology. 2012. pp. 77–100.

    Google Scholar 

  9. Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8. https://doi.org/10.1016/j.imr.2016.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao D, Mazur P, Critser JK. Fundamental cryobiology of mammalian spermatozoa. In: Karow AM, Critser JK, editors. Reproductive tissue banking. San Diego: Academic; 1997. p. 263–328.

    Chapter  Google Scholar 

  11. Gao DY, Liu J, Liu C, McGann LE, Watson PF, Kleinhans FW, et al. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod. 1995;10(5):1109–22. https://doi.org/10.1093/oxfordjournals.humrep.a136103.

    Article  CAS  PubMed  Google Scholar 

  12. Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84(10):1039–52. https://doi.org/10.1002/mrd.22871.

    Article  CAS  PubMed  Google Scholar 

  13. O’Connell M, McClure N, Lewis SE. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17(3):704–9. https://doi.org/10.1093/humrep/17.3.704.

    Article  PubMed  Google Scholar 

  14. Royere D, Barthelemy C, Hamamah S, Lansac J. Cryopreservation of spermatozoa: a 1996 review. Hum Reprod Update. 1996;2(6):553–9. https://doi.org/10.1093/humupd/2.6.553.

    Article  CAS  PubMed  Google Scholar 

  15. Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, et al. Vitrification of human spermatozoa without cryoprotectants. Cryo Letters. 2002;23(2):93–102.

    CAS  PubMed  Google Scholar 

  16. Paoli D, Lombardo F, Lenzi A, Gandini L. Sperm cryopreservation: effects on chromatin structure. Adv Exp Med Biol. 2014;791:137–50. https://doi.org/10.1007/978-1-4614-7783-9_9.

    Article  CAS  PubMed  Google Scholar 

  17. Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71(4):1167–73. https://doi.org/10.1095/biolreprod.104.028811.

    Article  CAS  PubMed  Google Scholar 

  18. Isachenko E, Isachenko V, Katkov II, Rahimi G, Schöndorf T, Mallmann P, et al. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum Reprod. 2004;19(4):932–9. https://doi.org/10.1093/humrep/deh194.

    Article  CAS  PubMed  Google Scholar 

  19. Takeshima T, Nakagata N, Ogawa S. [Cryopreservation of mouse spermatozoa]. Jikken Dobutsu. 1991;40(4):493–7. https://doi.org/10.1538/expanim1978.40.4_493.

  20. Koshimoto C, Mazur P. The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozen-thawed mouse sperm. Cryobiology. 2002;45(1):80–90. https://doi.org/10.1016/s0011-2240(02)00108-6.

    Article  CAS  PubMed  Google Scholar 

  21. Koshimoto C, Gamliel E, Mazur P. Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology. 2000;41(3):204–31. https://doi.org/10.1006/cryo.2000.2281.

    Article  CAS  PubMed  Google Scholar 

  22. Schulz M, Risopatrón J, Uribe P, Isachenko E, Isachenko V, Sánchez R. Human sperm vitrification: a scientific report. Andrology. 2020;8(6):1642–50. https://doi.org/10.1111/andr.12847.

    Article  CAS  PubMed  Google Scholar 

  23. Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko I, Nawroth F, et al. Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod Biomed Online. 2005;10(3):350–4. https://doi.org/10.1016/s1472-6483(10)61795-6.

    Article  PubMed  Google Scholar 

  24. Chen Y, Li L, Qian Y, Xu C, Zhu Y, Huang H, et al. Small-volume vitrification for human spermatozoa in the absence of cryoprotectants by using Cryotop. Andrologia. 2015;47(6):694–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pabón D, Meseguer M, Sevillano G, Cobo A, Romero JL, Remohí J, et al. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity. Andrology. 2019;7(3):293–301. https://doi.org/10.1111/andr.12607.

    Article  CAS  PubMed  Google Scholar 

  26. Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol. 2008;10(5):268–73. https://doi.org/10.1007/s12094-008-0196-7.

    Article  CAS  PubMed  Google Scholar 

  27. Isachenko V, Maettner R, Petrunkina AM, Mallmann P, Rahimi G, Sterzik K, et al. Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab. 2011;57(9–10):643–50.

    CAS  PubMed  Google Scholar 

  28. Isachenko V, Maettner R, Petrunkina A, Sterzik K, Mallmann P, Rahimi G, et al. Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology. J Androl. 2012;33(3):462–8.

    Article  CAS  PubMed  Google Scholar 

  29. Isachenko V, Isachenko E, Petrunkina AM, Sanchez R. Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reprod Fertil Dev. 2012;24(2):323–6. https://doi.org/10.1071/rd11061.

    Article  PubMed  Google Scholar 

  30. Sanchez R, Isachenko V, Petrunkina AM, Risopatron J, Schulz M, Isachenko E. Live birth after intrauterine insemination with spermatozoa from an oligoasthenozoospermic patient vitrified without permeable cryoprotectants. J Androl. 2012;33(4):559–62. https://doi.org/10.2164/jandrol.111.014274.

    Article  PubMed  Google Scholar 

  31. Berkovitz A, Miller N, Silberman M, Belenky M, Itsykson P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Hum Reprod. 2018;33(11):1975–83. https://doi.org/10.1093/humrep/dey304.

    Article  CAS  PubMed  Google Scholar 

  32. Belenky M, Itzhakov D, Freger V, Roseman O, Abehsera S, Miller N, et al. Optimizing the protocol for vitrification of individual spermatozoa by adjusting equilibration time. Syst Biol Reprod Med. 2020;66:223. https://doi.org/10.1080/19396368.2020.1737271.

    Article  CAS  PubMed  Google Scholar 

  33. McClean R, Zee YP, Holt WV, Johnston SD. Cryopreservation of kangaroo spermatozoa using alternative approaches that reduce cytotoxic exposure to glycerol. Cryobiology. 2008;57(3):304–7. https://doi.org/10.1016/j.cryobiol.2008.08.007.

    Article  CAS  PubMed  Google Scholar 

  34. Nouri Gharajelar S, Sadrkhanloo RA, Onsori M, Saberivand A. A comparative study on the effects of different cryoprotectants on the quality of canine sperm during vitrification process. Vet Res Forum. 2016;7(3):235–9.

    PubMed  PubMed Central  Google Scholar 

  35. Zilli L, Bianchi A, Sabbagh M, Pecoraro L, Schiavone R, Vilella S. Development of sea bream (Sparus aurata) semen vitrification protocols. Theriogenology. 2018;110:103–9. https://doi.org/10.1016/j.theriogenology.2017.12.039.

    Article  CAS  PubMed  Google Scholar 

  36. Le MT, Nguyen TTT, Nguyen TT, Nguyen VT, Nguyen TTA, Nguyen VQH, et al. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: effects on motility, viability, morphology and cellular defects. Eur J Obstet Gynecol Reprod Biol. 2019;234:14–20. https://doi.org/10.1016/j.ejogrb.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  37. Agha-Rahimi A, Khalili MA, Nabi A, Ashourzadeh S. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding. Reprod Biomed Online. 2014;28(3):352–8. https://doi.org/10.1016/j.rbmo.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Todorov P, Isachenko E, Rahimi G, Wang W, von Brandenstein M, et al. Aseptic capillary vitrification of human spermatozoa: cryoprotectant-free vs. cryoprotectant-included technologies. Cryobiology. 2021;99:95–102. https://doi.org/10.1016/j.cryobiol.2021.01.006.

    Article  CAS  PubMed  Google Scholar 

  39. Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 2006;20(4):411–6. https://doi.org/10.1101/gad.367606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu Z, Umehara T, Okazaki T, Goto M, Fujita Y, Hoque SAM, et al. Gene expression and protein synthesis in mitochondria enhance the duration of high-speed linear motility in boar sperm. Front Physiol. 2019;10:252. https://doi.org/10.3389/fphys.2019.00252.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bogle OA, Kumar K, Attardo-Parrinello C, Lewis SE, Estanyol JM, Ballescà JL, et al. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology. 2017;5(1):10–22. https://doi.org/10.1111/andr.12279.

    Article  CAS  PubMed  Google Scholar 

  42. Gholami D, Ghaffari SM, Shahverdi A, Sharafi M, Riazi G, Fathi R, et al. Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation. J Cell Biochem. 2018;119(11):9483–97. https://doi.org/10.1002/jcb.27265.

    Article  CAS  PubMed  Google Scholar 

  43. Yoon SJ, Rahman MS, Kwon WS, Park YJ, Pang MG. Addition of cryoprotectant significantly alters the epididymal sperm proteome. PLoS One. 2016;11(3):e0152690. https://doi.org/10.1371/journal.pone.0152690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaikwad AS, Anderson AL, Merriner DJ, O’Connor AE, Houston BJ, Aitken RJ, et al. GLIPR1L1 is an IZUMO-binding protein required for optimal fertilization in the mouse. BMC Biol. 2019;17(1):86. https://doi.org/10.1186/s12915-019-0701-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar P, Wang M, Isachenko E, Rahimi G, Mallmann P, Wang W, et al. Unraveling subcellular and ultrastructural changes during vitrification of human spermatozoa: effect of a mitochondria-targeted antioxidant and a permeable cryoprotectant. Front Cell Dev Biol. 2021;9:672862. https://doi.org/10.3389/fcell.2021.672862.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arav A, Natan Y, Levi-Setti PE, Menduni F, Patrizio P. New methods for cooling and storing oocytes and embryos in a clean environment of −196°C. Reprod Biomed Online. 2016;33(1):71–8. https://doi.org/10.1016/j.rbmo.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  47. Isachenko V, Todorov P, Seisenbayeva A, Toishibekov Y, Isachenko E, Rahimi G, et al. Vitrification of human pronuclear oocytes by direct plunging into cooling agent: non sterile liquid nitrogen vs. sterile liquid air. Cryobiology. 2018;80:84–8. https://doi.org/10.1016/j.cryobiol.2017.11.009.

    Article  CAS  PubMed  Google Scholar 

  48. Wang M, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Aseptic cryoprotectant-free vitrification of human spermatozoa by direct drop** into a cooling agent. Methods Mol Biol. 2021;2180:427–36. https://doi.org/10.1007/978-1-0716-0783-1_19.

    Article  CAS  PubMed  Google Scholar 

  49. Sohn J, Jun S, Park L, Kim E, Chung T, Lee D. Comparison of recovery and viability of sperm in ICSI pipette after ultra rapid freezing or slow freezing. Fertil Steril. 2003;80:128.

    Article  Google Scholar 

  50. Desai NN, Blackmon H, Goldfarb J. Single sperm cryopreservation on cryoloops: an alternative to hamster zona for freezing individual spermatozoa. Reprod Biomed Online. 2004;9(1):47–53. https://doi.org/10.1016/s1472-6483(10)62109-8.

    Article  PubMed  Google Scholar 

  51. Araki Y, Yao T, Asayama Y, Matsuhisa A, Araki Y. Single human sperm cryopreservation method using hollow-core agarose capsules. Fertil Steril. 2015;104(4):1004–9. https://doi.org/10.1016/j.fertnstert.2015.06.043.

    Article  CAS  PubMed  Google Scholar 

  52. Liu F, Zou S-S, Zhu Y, Sun C, Liu Y-F, Wang S-S, et al. A novel micro-straw for cryopreservation of small number of human spermatozoon. Asian J Androl. 2017;19(3):326–9. https://doi.org/10.4103/1008-682X.173452.

    Article  CAS  PubMed  Google Scholar 

  53. Medrano L, Enciso M, Gomez-Torres MJ, Aizpurua J. First birth of a healthy infant following intra-cytoplasmic sperm injection using a new permeable cryoprotectant-free sperm vitrification protocol. Cryobiology. 2019;87:117–9. https://doi.org/10.1016/j.cryobiol.2019.01.014.

    Article  CAS  PubMed  Google Scholar 

  54. Spis E, Bushkovskaia A, Isachenko E, Todorov P, Sanchez R, Skopets V, et al. Conventional freezing vs. cryoprotectant-free vitrification of epididymal (MESA) and testicular (TESE) spermatozoa: three live births. Cryobiology. 2019;90:100–2. https://doi.org/10.1016/j.cryobiol.2019.08.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodimir Isachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, M., Isachenko, E., Rahimi, G., Kumar, P., Mallmann, P., Isachenko, V. (2024). Vitrification of Human Spermatozoa: Effect of Cryoprotectants and Cooling Methods on Sperm Cryopreservation. In: Nagy, Z.P., Varghese, A.C., Agarwal, A. (eds) Cryopreservation in Assisted Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-031-58214-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58214-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58213-4

  • Online ISBN: 978-3-031-58214-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation