Sparsity in Covering Solutions

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14579))

Included in the following conference series:

  • 141 Accesses

Abstract

In the classical covering problems, the goal is to find a subset of vertices/edges that “covers” a specific structure of the graph. In this work, we initiate the study of the covering problems where given a graph G, in addition to the covering, the solution needs to be sparse, i.e., the number of edges with both the endpoints in the solution are minimized. We consider two well-studied covering problems, namely Vertex Cover and Feedback Vertex Set. In Sparse Vertex Cover, given a graph G, and integers kt, the goal is to find a minimal vertex cover S of size at most k such that the number of edges in G[S] is at most t. Analogously, we can define Sparse Feedback Vertex Set. Both the problems are NP-hard. We studied these problems in the realm of parameterized complexity. Our results are as follows:

  1. 1.

    Sparse Vertex Cover admits an \(\mathcal {O}(k^2)\) vertex kernel and an algorithm that runs in \(\mathcal {O}(1.3953^k\cdot n^{O(1)})\) time.

  2. 2.

    Sparse Feedback Vertex Set admits an \(\mathcal {O}(k^4)\) vertex kernel and an algorithm that runs in \(\mathcal {O}(5^k\cdot n^{O(1)})\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation \({\mathcal O}^\star (\cdot )\) suppresses the polynomial factor in (nm).

  2. 2.

    The correctness of Reduction Rules, Lemma, Theorem marked by \(\clubsuit \) are in appendix.

References

  1. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) IPEC, pp. 2:1–2:14 (2016)

    Google Scholar 

  2. Agrawal, A., Jain, P., Kanesh, L., Lokshtanov, D., Saurabh, S.: Conflict free feedback vertex set: a parameterized dichotomy. In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) MFCS, pp. 53:1–53:15 (2018)

    Google Scholar 

  3. Agrawal, A., Jain, P., Kanesh, L., Saurabh, S.: Parameterized complexity of conflict-free matchings and paths. Algorithmica 82(7), 1939–1965 (2020)

    Article  MathSciNet  Google Scholar 

  4. Arkin, E.M., et al.: Conflict-free covering. In: CCCG (2015)

    Google Scholar 

  5. Banik, A., Panolan, F., Raman, V., Sahlot, V., Saurabh, S.: Parameterized complexity of geometric covering problems having conflicts. Algorithmica 82(1), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex sets for graphs of bounded diameter. Inf. Process. Lett. 131, 26–32 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex set for p 5-free graphs. Algorithmica, pp. 1342–1369 (2019)

    Google Scholar 

  8. Cranston, D.W., Yancey, M.P.: Vertex partitions into an independent set and a forest with each component small. SIAM J. Discret. Math. 35(3), 1769–1791 (2021)

    Article  MathSciNet  Google Scholar 

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  10. Dabrowski, K.K., Johnson, M., Paesani, G., Paulusma, D., Zamaraev, V.: On the price of independence for vertex cover, feedback vertex set and odd cycle transversal. In: MFCS, pp. 63:1–63:15 (2018)

    Google Scholar 

  11. Diestel, R.: Graph theory. Springer, New York (2000)

    Google Scholar 

  12. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discret. Math. 313(7), 839–854 (2013)

    Article  MathSciNet  Google Scholar 

  13. Goddard, W., Henning, M.A.: Independent domination in outerplanar graphs. Discret. Appl. Math. 325, 52–57 (2023)

    Article  MathSciNet  Google Scholar 

  14. Hakimi, S.L., Schmeichel, E.F.: A note on the vertex arboricity of a graph. SIAM J. Discret. Math. 2(1), 64–67 (1989)

    Article  MathSciNet  Google Scholar 

  15. Jacob, A., Majumdar, D., Raman, V.: Parameterized complexity of conflict-free set cover. Theory Comput. Syst. 65(3), 515–540 (2021)

    Article  MathSciNet  Google Scholar 

  16. Jain, P., Kanesh, L., Misra, P.: Conflict free version of covering problems on graphs: classical and parameterized. Theory Comput. Syst. 64(6), 1067–1093 (2020)

    Article  MathSciNet  Google Scholar 

  17. Jain, P., Kanesh, L., Roy, S.K., Saurabh, S., Sharma, R.: Circumventing connectivity for kernelization. In: CIAC 2021, vol. 12701, pp. 300–313 (2021)

    Google Scholar 

  18. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  Google Scholar 

  19. Li, S., Pilipczuk, M.: An improved fpt algorithm for independent feedback vertex set. Theory Comput. Syst. 64, 1317–1330 (2020)

    Article  MathSciNet  Google Scholar 

  20. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  21. Thomassé, S.: A 4\({k}{}^{\text{2}}\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32:1–32:8 (2010)

    Google Scholar 

  22. Wu, Y., Yuan, J., Zhao, Y.: Partition a graph into two induced forests. J. Math. Study 1(01) (1996)

    Google Scholar 

  23. Yang, A., Yuan, J.: Partition the vertices of a graph into one independent set and one acyclic set. Discret. Math. 306(12), 1207–1216 (2006)

    Article  MathSciNet  Google Scholar 

  24. Yang, A., Yuan, J.: On the vertex arboricity of planar graphs of diameter two. Discret. Math. 307(19–20), 2438–2447 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manveer Singh Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, P., Rathore, M.S. (2024). Sparsity in Covering Solutions. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation