The Interweaving of B9- and B12-Dependent Reactions and Their Clinical Implications

  • Chapter
  • First Online:
Hydrophilic Vitamins in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 29))

  • 66 Accesses

Abstract

Folate (vitamin B9) and vitamin B12 (cobalamin) are part of the one-carbon metabolism pathways. Both of them are water-soluble compounds and play an essential role in DNA production, amino acid homeostasis, antioxidant activities and epigenetic regulation. These vitamins are involved in very few reactions in the human body, yet they are vital to normal functioning of the cells. In synergy, these vitamins play an essential role in the conversion of homocysteine to S-adenosyl methionine (the universal methyl donor) via methionine. Through these reactions they ensure appropriate cell division and maturation via their impact on DNA synthesis and metabolism, regulation of gene expression and maintenance of chromosome conformation. It follows that any aberrations in these reactions (as may occur due to deficiency of these vitamins) have far reaching effects that encompass foetal development, haematopiesis, the circulatory system, the nervous system, genetic aberrations, epigenetic transformations, malignancies and ageing, i.e. from conception to demise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piro A, Tagarelli G, Lagonia P et al (2010) Casimir funk: his discovery of the vitamins and their deficiency disorders. Ann Nutr Metab 57(2):85–88. https://doi.org/10.1159/000319165. Epub 2010 Aug 30 PMID: 20805686

    Article  CAS  PubMed  Google Scholar 

  2. https://ods.od.nih.gov/factsheets/folate-HealthProfessional/

  3. Wills L (1931) Treatment of ‘pernicious anaemia’ of pregnancy and ‘tropical anaemia’, with special reference to yeast extract as a curative agent. BMJ 1:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wills L (1933) The nature of the haemopoietic factor in Marmite. Lancet 221:1283–1285

    Article  Google Scholar 

  5. Wills L (1934) Studies in pernicious anaemia of pregnancy. Part VI. Tropical macrocytic anaemia as a deficiency disease, with special reference to the vitamin B complex. Indian J Med Res 21:669–681

    CAS  Google Scholar 

  6. SubbaRow Y, Angier RB, Bohonos N et al (1946). Folic acid. Annal New York Acad Sci XLVIII:282–287

    Google Scholar 

  7. Shorb MS (1947) Unidentified essential growth factors for lactobacillus-lactis found in refined liver extracts and in certain natural materials. J Bacteriol 53:669–669

    CAS  PubMed  Google Scholar 

  8. Scott JM, Molloy AM (2012) The discovery of vitamin B(12). Ann Nutr Metab 61(3):239–245. https://doi.org/10.1159/000343114

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Y, Cantley LC (2019) Toward a better understanding of folate metabolism in health and disease. J Exp Med 216(2):253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao R, Diop-Bove N, Visentin M, Goldman ID (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 31:177–201. https://doi.org/10.1146/annurev-nutr-072610-145133

    Article  CAS  PubMed  Google Scholar 

  11. Bhargava S, Tyagi SC (2014) Nutriepigenetic regulation by folate-methionine-homocysteine axis: a review. Mol Cel Biochem 387(1–2):55–61. https://doi.org/10.1007/s11010-013-1869-2

    Article  CAS  Google Scholar 

  12. Bloch JS, Ruetz M, Kräutler B, Locher KP (2017) Structure of the human transcobalamin beta domain in four distinct states. PLoS ONE 12(9):e0184932. https://doi.org/10.1371/journal.pone.0184932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jagerstad M, Arkbage K (2003). COBALAMINS|Properties and determination. In: Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press. ISBN 978–0–12–227055–0

    Google Scholar 

  14. Wan Z, Zheng J, Zhu Z et al (2022). Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutri https://doi.org/10.3389/fnut.2022.1031502

  15. Kozyraki R, Cases O (2013) Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie 95(5):1002–1007. https://doi.org/10.1016/j.biochi.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  16. Bhargava S, Srivastava LM (2014) Hyperhomocysteinemia and its clinical implications—a short review. Curr Med Res Pract 4(3):112–118

    Article  Google Scholar 

  17. Shenkin A, Roberts NB (2012) Vitamins and trace elements. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry, 5th edn. Saunders, Philadelphia, pp 895–983

    Google Scholar 

  18. Bhargava S (2018) Clinical applications of homocysteine. Ed Springer Books International. ISBN 978–981–10–7632–9.

    Google Scholar 

  19. Giedyk M, Goliszweska K, Gryko D (2015) Vitamin B12 catalysed reactions. Chem Soc Rev 11

    Google Scholar 

  20. Marsh EN, Meléndez GD (2012) Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim Biophys Acta 1824(11):1154–1164. https://doi.org/10.1016/j.bbapap.2012.03.012. Epub 2012 Apr 3. PMID: 22516318; PMCID: PMC3580769.

  21. Cracan V, Banerjee R (2012) Novel B(12)-dependent acyl-CoA mutases and their biotechnological potential. Biochemistry 51(31):6039–6046. https://doi.org/10.1021/bi300827v

    Article  CAS  PubMed  Google Scholar 

  22. Pavlova N, Penchovsky R (2019) Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin Ther Targets 23(7):631–643

    Article  CAS  PubMed  Google Scholar 

  23. Andrès E, Loukili NH, Noel E et al (2004) Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ 171(3):251–259. https://doi.org/10.1503/cmaj.1031155

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoffbrand AV (2012). Megaloblastic anemias. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL and Loscalzo J (ed) Harrison’s textbook of internal medicine, 18th edn. McGraw Hill, pp 862–872

    Google Scholar 

  25. Praveen G, Sivaprasad M, Bhanuprakash Reddy G (2022) Chapter eleven—telomere length and vitamin B12. Vitam Horm 119:299–324

    Article  CAS  PubMed  Google Scholar 

  26. Pusceddu I, Herrmann W, Kleber ME et al (2019) Telomere length, vitamin B12 and mortality in persons undergoing coronary angiography: the Ludwigshafen risk and cardiovascular health study. Aging (Albany NY) 11(17):7083–7097. https://doi.org/10.18632/aging.102238

    Article  CAS  PubMed  Google Scholar 

  27. Zhang D, Wen X, Zhang L, Cui W (2014) DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J 78(8):1915–1923. https://doi.org/10.1253/circj.CJ-14-0233

    Article  CAS  PubMed  Google Scholar 

  28. Green R (2017) Vitamin B12 deficiency from the perspective of a practicing haematologist. Blood 129(19):2603–2611

    Article  CAS  PubMed  Google Scholar 

  29. Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168(3):344–361. https://doi.org/10.1016/j.cell.2016.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balashova OA, Visina O, Borodinsky LN (2018) Folate action in nervous system development and disease. Dev Neurobiol 78(4):391–402. https://doi.org/10.1002/dneu.22579

    Article  PubMed  PubMed Central  Google Scholar 

  31. Imbard A, Benoist JF, Blom HJ (2013) Neural tube defects, folic acid and methylation. Int J Environ Res Public Health 10(9):4352–4389. https://doi.org/10.3390/ijerph10094352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhargava S, Bhandari A, Choudhury S (2018) Role of homocysteine in cognitive impairment and Alzheimer’s disease. Ind J of Clin Biochem 33(1):16–20. https://doi.org/10.1007/s12291-017-0646-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhargava, S., Kankra, M. (2024). The Interweaving of B9- and B12-Dependent Reactions and Their Clinical Implications. In: Shah, A.K., Tappia, P.S., Dhalla, N.S. (eds) Hydrophilic Vitamins in Health and Disease. Advances in Biochemistry in Health and Disease, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-031-55474-2_14

Download citation

Publish with us

Policies and ethics

Navigation