On the Numerical Stability of Discretised Optimal Control Problems

  • Conference paper
  • First Online:
Optimal Design and Control of Multibody Systems (IUTAM 2022)

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 42))

  • 117 Accesses

Abstract

Optimal Control Problems (OCP) consist in optimising an objective functional subjected to a set of Ordinary Differential Equations. In this work, we consider the effects on the stability of the numerical solution when this optimisation is discretised in time. In particular, we analyse a OCP with a quadratic functional and linear ODE, discretised with Mid-point and implicit Euler. We show that the numerical stability and the presence of numerical oscillations depends not only on the time-step size, but also on the parameters of the objective functional, which measures the amount of control input. Finally, we also show with an illustrative example that these results also carry over non-linear optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), (1998)

    Google Scholar 

  2. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Society for Industrial and Applied Mathematics (SIAM) (2010)

    Google Scholar 

  3. Betsch, P., Becker, C.: Conservation of generalized momentum maps in mechanical optimal control problems with symmetry. Int. J. Numer. Meth. Eng. 111(2), 144–175 (2017). https://doi.org/10.1002/nme.54594

    Article  MathSciNet  Google Scholar 

  4. Bryson, A.E.; Ho, Y.C.: Applied Optimal Control. Optimization, Estimation and Control. Taylor & Francis (1975)

    Google Scholar 

  5. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152(2), 271–306 (2012). https://doi.org/10.1007/s10957-011-9918-z

    Article  MathSciNet  Google Scholar 

  6. Flaßkamp, K., Murphey, T.D.: Structure-preserving local optimal control of mechanical systems. Optimal Contr. Appl. Methods 40(2), 310–329 (2019). https://doi.org/10.1002/oca.2479

    Article  MathSciNet  Google Scholar 

  7. Gonzalez, O.: Mechanical systems subject to holonomic constraints: differential algebraic formulations and conservative integration. Physica D 132(1–2), 165–174 (1999). https://doi.org/10.1016/S0167-2789(99)00054-8

    Article  MathSciNet  Google Scholar 

  8. Hairer, E., Wanner, G., Lubich, C.: Symplectic integration of hamiltonian systems. In Geometric Numerical Integration. Springer, Berlin, Heidelberg (2006)

    Book  Google Scholar 

  9. Hilber, H.M., Hughes, T.J.R.: Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics. Int. J. Num. Meth. Engin. 6(1), 99–117 (1978)

    Google Scholar 

  10. Koch, M.W., Leyendecker, S.: Energy momentum consistent force formulation for the optimal control of multibody systems. Multibody Sys.Dyn. 29(4), 381–401 (2013). https://doi.org/10.1007/s11044-012-9332-9

    Article  MathSciNet  Google Scholar 

  11. Miller, M.I., Trouvé, A., Younes, L.: Hamiltonian systems and optimal control in computational anatomy: 100 years since d’arcy thompson. Annu. Rev. Biomed. Eng. 17, 447–509 (2015). https://doi.org/10.1146/annurev-bioeng-071114-040601

    Article  Google Scholar 

  12. Sharp, J.A., Burrage, K., Simpson, M.J.: Implementation and acceleration of optimal control for systems biology. J. R. Soc. Interface 18(181), 20210241 (2021). https://doi.org/10.1098/rsif.2021.0241

Download references

Acknowledgements

This work is financially supported by the Spanish Ministry of Science and Innovation, under Severo Ochoa program CEX2018-000797-S, and the research project DynAd2, with reference PID2020-116141GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bijalwan, A., Muñoz, J.J. (2024). On the Numerical Stability of Discretised Optimal Control Problems. In: Nachbagauer, K., Held, A. (eds) Optimal Design and Control of Multibody Systems. IUTAM 2022. IUTAM Bookseries, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-031-50000-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50000-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49999-9

  • Online ISBN: 978-3-031-50000-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation