Emerging Nanotechnology for the Treatment and Diagnosis of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD)

  • Chapter
  • First Online:
Regenerative Medicine and Brain Repair

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 75))

  • 228 Accesses

Abstract

Introduction: Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative diseases distinguished by the aggregation of pathologic proteins leading to the respective onset of motor dysfunction and cognitive decline, particularly in memory. Emerging evidence showed that these misfolded proteins are prion-like seeds, which can induce endogenous protein aggregation and subsequent cell-to-cell, tissue-to-tissue transmission and propagation. The prion-like protein aggregation and spreading is accompanied by several other cellular phenomena including neurotoxicity, oxidative stress, and neuroinflammation. While traditional therapeutics have been largely unsuccessful in combatting PD and AD and their underlying pathophysiology, the customizability, specificity, and efficiency of nanotechnology presents a novel and promising avenue for the development of successful therapeutics. Methods: This chapter was written through a literature review sourced largely from PubMed and ScienceDirect with keywords of AD, PD, nanomaterials, neuroinflammation, biosensing, oxidative stress, and fibrillization. Some of this chapter is based on the review “Emerging Nanotechnology for Treatment of Alzheimer’s and Parkinson’s Disease,” published in Frontiers in Bioengineering and Biotechnology. Results: A thorough review reveals preclinical studies show incredible promise in nanotechnology as an effective combatant of neuroinflammation, protein aggregation, oxidative stress, and neuron death in AD and PD. However, clinical and longitudinal trials are still lacking; further research should be done to establish the safety and long-term side effects and efficacy of nanotechnology-based therapeutics. Conclusions: Despite its increasing momentum, research in nanotechnology for the treatment of AD and PD is still in its early stages. While proof of concept is established across several mechanisms of action, further research is necessary to establish clinically relevant information and further exploring regenerative and biosensing applications of nanotechnology. Nevertheless, nanotechnology presents an exciting new avenue for therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

α-syn:

Alpha-synuclein

LB:

Lewy body

Aβ:

Beta-amyloid

ROS:

Reactive oxidative species

BBB:

Blood-brain barrier

NP:

Nanoparticle

siRNA:

Small interfering ribonucleic acid

GQD:

Graphene quantum dots

PFF:

Pre-formed fibrils

AuNP:

Gold nanoparticle

RVG:

Rabies virus glycoprotein

mRNA:

Messenger ribonucleic acid

βCas:

Beta-casein

Aβ42:

Beta-amyloid 42

PEG:

Polyethylene glycol

PC:

Protein-capped

ELISA:

Enzyme-linked immunosorbent assay

HDAC:

Histidine deacetylase

SLN:

Solid lipid particles

HA:

Hyaluronic acid

ABP:

Aβ oligomer binding protein

BBB:

Blood-brain barrier

NO:

Nitic oxide

SOD:

Superoxide dismutase

POD:

Peroxidase dismutase

MPP+:

1-Methy-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

RA:

Retinoic acid

GNP:

Gold nanoparticle

GNPs-LA:

Lipoic acid capped gold NPs

6-OHDA:

6-Hydroxydopamine

CoQ10:

Coenzyme Q10

EGCG:

Epigallocatechin gallate

RES:

Resveratrol

DHDP:

Dihexadecyl phosphate

PA:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate

BAX:

Bcl-2 associated X protein

TH:

Tyrosine hydroxylase

MNEI:

Mucoadhesive nanoemulsion

APP:

Amyloid precursor protein

PLGA-PEG:

Pegylated poly(lactic-co-glycolic acid)

GFAP:

Glial fibrillary acidic protein

Iba-1:

Ionized calcium-binding adapter molecule 1

Il-8:

Interleukin-8

MCP-1:

Monocyte chemoattractant protein 1

COX-2:

Cyclooxygenase 2

mPGES-1:

Microsomal prostaglandin E synthase-1

TLR4:

Toll-like receptor 4

TNF- α:

Tumor necrosis factor alpha

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

GMO:

Glyceryl monooleate

ISG:

In situ hydrogel

LPS:

Liposaccharide

CA1:

Cornu ammonis

PLGA:

Poly(lactic-co-glycolic acid)

GDNF:

Glial cell line-derived neurotrophic factor

BDNF:

Brain-derived neurotrophic factor

PBS:

Phosphate-buffered saline

RGD:

Arginylglycylaspartic acid

ECM:

Extracellular matric

NSC:

Neural stem cell

IGF-1:

Insulin-like growth factor 1

IL-10:

Interleukin-10

CNTF:

Ciliary neurotrophic factor

siSOX9:

Small interfering RNA

SAPNS:

Self-assembling peptide nanofiber scaffold

AuNP:

Gold nanoparticle

AgNP:

Silver nanoparticle

PrP:

Prion protein

ApoE:

Apolipoprotein E

PCR:

Polymerase chain reaction

UV:

Ultraviolet

References

  1. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  2. He Z, Guo JL, McBride JD et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24(1):29–38

    Article  CAS  PubMed  Google Scholar 

  3. Guo JL, Narasimhan S, Changolkar L et al (2016) Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J Exp Med 213(12):2635–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim S, Kwon SH, Kam TI et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4):627-641.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kam TI, Mao X, Park H et al. (2018) Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science 362(6414)

    Google Scholar 

  6. Mao X, Ou MT, Karuppagounder SS et al. (2016) Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353(6307)

    Google Scholar 

  7. Luk KC, Kehm V, Carroll J et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    Article  CAS  PubMed  Google Scholar 

  9. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  PubMed  Google Scholar 

  10. Gupta J, Fatima MT, Islam Z et al. (2019) Nanoparticle formulations in the diagnosis and therapy of Alzheimer's disease. Int J Biol Macromol 130:515–526

    Google Scholar 

  11. Liu L, Zhang L, Niu L et al (2011) Observation of reduced cytotoxicity of aggregated amyloidogenic peptides with chaperone-like molecules. ACS Nano 5(7):6001–6007

    Article  CAS  PubMed  Google Scholar 

  12. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F et al (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223

    Article  CAS  PubMed  Google Scholar 

  13. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeda S (2019) Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors. Neurosci Res 141:36–42

    Google Scholar 

  15. Li A, Rastegar C, Mao X (2022) α-synuclein conformational plasticity: physiologic states, pathologic strains, and biotechnological applications. Biomolecules 12(7)

    Google Scholar 

  16. Ganjam GK, Bolte K, Matschke LA et al (2019) Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 10(11):865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devi L, Raghavendran V, Prabhu BM et al (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li WW, Yang R, Guo JC et al (2007) Localization of alpha-synuclein to mitochondria within midbrain of mice. NeuroReport 18(15):1543–1546

    Article  CAS  PubMed  Google Scholar 

  19. Seo BA, Kim D, Hwang H et al (2021) TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson’s disease. Neuron 109(23):3758-3774.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jo A, Lee Y, Kam TI et al (2021) PARIS farnesylation prevents neurodegeneration in models of Parkinson's disease. Sci Transl Med 13(604)

    Google Scholar 

  21. Panicker N, Kam TI, Wang H et al (2022) Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110(15):2422-2437.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao X, Gu H, Kim D et al. (2021) Aplp1 and the Aplp1-Lag3 Complex facilitates transmission of pathologic α-synuclein. bioRxiv 2021.05.01.442157

    Google Scholar 

  23. Brahmachari S, Ge P, Lee SH et al (2016) Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest 126(8):2970–2988

    Article  PubMed  PubMed Central  Google Scholar 

  24. Henrich MT, Geibl FF, Lakshminarasimhan H et al. (2020) Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci Adv 6(46)

    Google Scholar 

  25. Deyell JS, Sriparna M, Ying M et al. (2023) The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. Int J Mol Sci 24(3)

    Google Scholar 

  26. Jia L, Liu Y, Wang W et al (2020) Molecular mediation of prion-like α-synuclein fibrillation from toxic PFFs to nontoxic species. ACS Appl Bio Mater 3(9):6096–6102

    Article  CAS  PubMed  Google Scholar 

  27. Diaz-Ortiz ME, Seo Y, Posavi M et al (2022) GPNMB confers risk for Parkinson's disease through interaction with α-synuclein. Science 377(6608):eabk0637

    Google Scholar 

  28. Yun SP, Kam TI, Panicker N et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  PubMed  Google Scholar 

  30. Shahnawaz M, Mukherjee A, Pritzkow S et al (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578(7794):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang C, Yang A, Li X et al (2012) Observation of molecular inhibition and binding structures of amyloid peptides. Nanoscale 4(6):1895–1909

    Article  CAS  PubMed  Google Scholar 

  32. Li A, Tyson J, Patel S et al (2021) Emerging nanotechnology for treatment of Alzheimer's and Parkinson's disease. Front Bioeng Biotechnol 9:672594

    Google Scholar 

  33. Zhang M, Mao X, Yu Y et al (2013) Nanomaterials for reducing amyloid cytotoxicity. Adv Mater 25(28):3780–3801

    Article  CAS  PubMed  Google Scholar 

  34. Eleftheriadou D, Kesidou D, Moura F et al (2020) Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small 16(43):e1907308

    Article  PubMed  Google Scholar 

  35. Leyva-Gómez G, Cortés H, Magaña JJ et al (2015) Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today 20(7):824–837

    Article  PubMed  Google Scholar 

  36. Su S, Kang PM (2020) Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials (Basel) 10(4)

    Google Scholar 

  37. Bordoni M, Scarian E, Rey F et al. (2020) Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int J Mol Sci 21(9)

    Google Scholar 

  38. Brás IC, Outeiro TF (2021) Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells 10(2)

    Google Scholar 

  39. Isonaka R, Sullivan P, Goldstein DS (2022) Pathophysiological significance of increased α-synuclein deposition in sympathetic nerves in Parkinson’s disease: a post-mortem observational study. Transl Neurodegener 11(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henderson MX, Trojanowski JQ, Lee VM (2019) α-synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 709:134316

    Google Scholar 

  41. Kim D, Yoo JM, Hwang H et al (2018) Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol 13(9):812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaushik AC, Bharadwaj S, Kumar S et al (2018) Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep 8(1):9169

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zand Z, Khaki PA, Salihi A et al (2019) Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. Int J Nanomedicine 14:6989–7000

    Google Scholar 

  44. Ruotolo R, De Giorgio G, Minato I et al. (2020) Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson's disease. Nanomat (Basel) 10(2)

    Google Scholar 

  45. Liao W, Du Y, Zhang C et al (2019) Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 86:1–14

    Google Scholar 

  46. Cooper JM, Wiklander PB, Nordin JZ et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Google Scholar 

  48. Zheng F, Pang Y, Li L et al. (2022) Applications of nanobodies in brain diseases. Front Immunol 13:978513

    Google Scholar 

  49. El-Turk F, Newby FN, De Genst E et al (2016) Structural effects of two camelid nanobodies directed to distinct C-terminal epitopes on α-synuclein. Biochemistry 55(22):3116–3122

    Article  CAS  PubMed  Google Scholar 

  50. Hmila I, Vaikath NN, Majbour NK et al (2022) Novel engineered nanobodies specific for N-terminal region of alpha-synuclein recognize Lewy-body pathology and inhibit in-vitro seeded aggregation and toxicity. FEBS J 289(15):4657–4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joshi SN, Butler DC, Messer A (2012) Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs 4(6):686–693

    Article  PubMed  PubMed Central  Google Scholar 

  52. Butler YR, Liu Y, Kumbhar R et al (2022) α-Synuclein fibril-specific nanobody reduces prion-like α-synuclein spreading in mice. Nat Commun 13(1):4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kogan MJ, Bastus NG, Amigo R et al (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):110–115

    Article  CAS  PubMed  Google Scholar 

  54. Thorn DC, Ecroyd H, Carver JA (2009) The two-faced nature of milk casein proteins: amyloid fibril formation and chaperone-like activity. Australian J Dairy Tech 64(1):34–40

    CAS  Google Scholar 

  55. Javed I, Peng G, **ng Y et al (2019) Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 10(1):3780

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gao N, Dong K, Zhao AD et al (2016) Polyoxometalate-based nanozyme: design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res 9(4):1079–1090

    Article  CAS  Google Scholar 

  57. Ma MM, Liu ZQ, Gao N et al (2020) Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-beta in an Alzheimer’s disease model. J Am Chem Soc 142(52):21702–21711

    Article  CAS  PubMed  Google Scholar 

  58. Sonawane SK, Ahmad A, Chinnathambi S (2019) Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega 4(7):12833–12840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hossain ST, Mukherjee SK (2013) Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 260:1073–1082

    Google Scholar 

  60. Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13(4):539–550

    Article  CAS  PubMed  Google Scholar 

  61. Knip M, Douek IF, Moore WP et al (2000) Safety of high-dose nicotinamide: a review. Diabetologia 43(11):1337–1345

    Article  CAS  PubMed  Google Scholar 

  62. Vakilinezhad MA, Amini A, Akbari Javar H et al (2018) Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 26(2):165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee BI, Chung YJ, Park CB (2019) Photosensitizing materials and platforms for light-triggered modulation of Alzheimer's β-amyloid self-assembly. Biomat 190–191:121–132

    Google Scholar 

  64. Ishida Y, Tanimoto S, Takahashi D et al. (2010) Photo-degradation of amyloid β by a designed fullerene–sugar hybrid. Med Chem Commun 1:212–215

    Google Scholar 

  65. Chung YJ, Kim K, Lee BI et al. (2017) Carbon nanodot-sensitized modulation of Alzheimer's β-amyloid self-assembly, disassembly, and toxicity. Small 13:34

    Google Scholar 

  66. Chung YJ, Lee BI, Ko JW et al (2016) Photoactive g-C3 N4 nanosheets for light-induced suppression of Alzheimer’s β-amyloid aggregation and toxicity. Adv Healthc Mater 5(13):1560–1565

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Liu J, Zhu Y et al (2016) Photodynamic micelles for amyloid β degradation and aggregation inhibition. Chem Commun (Camb) 52(81):12044–12047

    Article  CAS  PubMed  Google Scholar 

  68. Zhang H, Hao C, Qu A et al (2020) Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo. Angew Chem Int Ed Engl 59(18):7131–7138

    Article  CAS  PubMed  Google Scholar 

  69. Jiang Z, Dong X, Liu H et al (2016) Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity. Reactive Funct Polym 104:22–29

    Google Scholar 

  70. Jiang Z, Dong X, Yan X et al (2018) Nanogels of dual inhibitor-modified hyaluronic acid function as a potent inhibitor of amyloid β-protein aggregation and cytotoxicity. Sci Rep 8(1):3505

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yau WM, Tycko R (2018) Depletion of amyloid-β peptides from solution by sequestration within fibril-seeded hydrogels. Protein Sci 27(7):1218–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simpson LW, Szeto GL, Boukari H et al (2020) Impact of four common hydrogels on amyloid-β (Aβ) aggregation and cytotoxicity: implications for 3D models of Alzheimer’s disease. ACS Omega 5(32):20250–20260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rutgers KS, van Remoortere A, van Buchem MA et al (2011) Differential recognition of vascular and parenchymal beta amyloid deposition. Neurobiol Aging 32(10):1774–1783

    Article  PubMed  Google Scholar 

  74. Lafaye P, Achour I, England P et al (2009) Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol Immunol 46(4):695–704

    Article  CAS  PubMed  Google Scholar 

  75. Zameer A, Kasturirangan S, Emadi S et al (2008) Anti-oligomeric Abeta single-chain variable domain antibody blocks Abeta-induced toxicity against human neuroblastoma cells. J Mol Biol 384(4):917–928

    Article  CAS  PubMed  Google Scholar 

  76. Kasturirangan S, Li L, Emadi S et al (2012) Nanobody specific for oligomeric β-amyloid stabilizes nontoxic form. Neurobiol Aging 33(7):1320–1328

    Article  CAS  PubMed  Google Scholar 

  77. Kasturirangan S, Boddapati S, Sierks MR (2010) Engineered proteolytic nanobodies reduce Abeta burden and ameliorate Abeta-induced cytotoxicity. Biochemistry 49(21):4501–4508

    Article  CAS  PubMed  Google Scholar 

  78. Kang MS, Shin M, Ottoy J et al (2022) Preclinical. J Cereb Blood Flow Metab 42(5):788–801

    Article  CAS  PubMed  Google Scholar 

  79. Dupré E, Danis C, Arrial A et al (2019) Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci 10(9):3997–4006

    Article  PubMed  Google Scholar 

  80. Danis C, Dupré E, Zejneli O et al (2022) Inhibition of Tau seeding by targeting Tau nucleation core within neurons with a single domain antibody fragment. Mol Ther 30(4):1484–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200

    Article  CAS  PubMed  Google Scholar 

  82. Gao L, Gao X, Yan X (2020) Kinetics and mechanisms for nanozymes. In: Nanozymology nanostructure science and technology. Springer, Singapore

    Google Scholar 

  83. Yang Y, Mao Z, Huang W et al (2016) Redox enzyme-mimicking activities of CeO. Sci Rep 6:35344

    Google Scholar 

  84. Liu C, Yan Y, Zhang X et al (2020) Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe. Nanoscale 12(5):3068–3075

    Article  CAS  PubMed  Google Scholar 

  85. He W, Han X, Jia H et al. (2017) AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep 7:40103

    Google Scholar 

  86. Hao C, Qu A, Xu L et al (2019) Chiral molecule-mediated porous Cu. J Am Chem Soc 141(2):1091–1099

    Article  CAS  PubMed  Google Scholar 

  87. Singh N, Savanur MA, Srivastava S et al (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angewandte Chemie-International Edition 56(45):14267–14271

    Article  CAS  PubMed  Google Scholar 

  88. Sharma P, Jha AB, Dubey RS et al. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot

    Google Scholar 

  89. Yu D, Ma M, Liu Z et al. (2020) MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer's disease model. Biomaterials 255:120160

    Google Scholar 

  90. Dal Bosco L, Weber GE, Parfitt GM et al (2015) Biopersistence of PEGylated carbon nanotubes promotes a delayed antioxidant response after infusion into the rat hippocampus. PLoS ONE 10(6):17

    Google Scholar 

  91. van Berlo D, Clift MJ, Albrecht C et al. (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698

    Google Scholar 

  92. Molz P, Schröder N (2017) Potential therapeutic effects of lipoic acid on memory deficits related to aging and neurodegeneration. Front Pharmacol 8:849

    Google Scholar 

  93. Andreeva-Gateva P, Traikov L, Sabit Z et al. (2020) Antioxidant Effect of Alpha-Lipoic Acid in 6-Hydroxydopamine Unilateral Intrastriatal Injected Rats. Antioxidants (Basel) 9(2)

    Google Scholar 

  94. Salehi B, Berkay Yılmaz Y, Antika G et al. (2019) Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 9(8)

    Google Scholar 

  95. Teichert J, Hermann R, Ruus P et al (2003) Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol 43(11):1257–1267

    Article  PubMed  Google Scholar 

  96. Piersimoni ME, Teng X, Cass AEG et al (2020) Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. Nanoscale Adv 2(12):5666–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gaba B, Khan T, Haider MF et al. (2019) Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson's disease model. Biomed Res Int, 2382563

    Google Scholar 

  98. Gupta BK, Kumar S, Kaur H et al (2018) Attenuation of oxidative damage by coenzyme Q. Rejuvenation Res 21(3):232–248

    Article  CAS  PubMed  Google Scholar 

  99. Stojanović S, Sprinz H, Brede O (2001) Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys 391(1):79–89

    Article  PubMed  Google Scholar 

  100. Wu Y, Li X, Zhu JX et al (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19(3):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu Y, Zhang Y, Quan Z et al (2016) Epigallocatechin gallate (EGCG) inhibits alpha-synuclein aggregation: a potential agent for Parkinson’s disease. Neurochem Res 41(10):2788–2796

    Article  CAS  PubMed  Google Scholar 

  102. Aliakbari F, Shabani AA, Bardania H et al. (2018) Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids Surf B Biointerfaces 161:578–587

    Google Scholar 

  103. Wang Y, Xu H, Fu Q et al (2011) Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J Neurol Sci 304(1–2):29–34

    Article  CAS  PubMed  Google Scholar 

  104. Ethemoglu MS, Seker FB, Akkaya H et al. (2017) Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 357:12–19

    Google Scholar 

  105. Du GJ, Zhang Z, Wen XD et al (2012) Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4(11):1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu J, Park CS, Lee SK et al (2006) Leptin inhibits 1-methyl-4-phenylpyridinium-induced cell death in SH-SY5Y cells. Neurosci Lett 407(3):240–243

    Article  CAS  PubMed  Google Scholar 

  107. Lopalco A, Cutrignelli A, Denora N et al. (2018) Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nanomaterials (Basel) 8(3)

    Google Scholar 

  108. Kuo YC, Wang IH, Rajesh R (2021) Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson's disease therapy. Acta Biomater 119:360–374

    Google Scholar 

  109. Haney MJ, Klyachko NL, Zhao Y et al. (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30

    Google Scholar 

  110. Elnaggar YS, Etman SM, Abdelmonsif DA et al (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104(10):3544–3556

    Article  CAS  PubMed  Google Scholar 

  111. Cardia MC, Carta AR, Caboni P et al. (2019) Trimethyl chitosan hydrogel nanoparticles for progesterone delivery in neurodegenerative disorders. Pharmaceutics 11(12)

    Google Scholar 

  112. Rajput A, Bariya A, Allam A et al (2018) In situ nanostructured hydrogel of resveratrol for brain targeting: in vitro-in vivo characterization. Drug Deliv Transl Res 8(5):1460–1470

    Article  CAS  PubMed  Google Scholar 

  113. Chen W, Li R, Zhu S et al. (2020) Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer's disease induced by lipopolysaccharides. Int J Pharm 578:119115

    Google Scholar 

  114. Salatin S, Barar J, Barzegar-Jalali M et al (2020) Formulation and evaluation of eudragit RL-100 nanoparticles loaded in-situ forming gel for intranasal delivery of rivastigmine. Adv Pharm Bull 10(1):20–29

    Article  CAS  PubMed  Google Scholar 

  115. Mandal S, Mandal SD, Chuttani K et al. (2016) Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPT P induced Parkinson model. J Pharm Invest 46:41–53

    Google Scholar 

  116. Sánchez-López E, Ettcheto M, Egea MA et al (2017) New potential strategies for Alzheimer’s disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine 13(3):1171–1182

    Article  PubMed  Google Scholar 

  117. Testa G, Gamba P, Badilli U et al (2014) Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols. PLoS ONE 9(5):e96795

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ganesan P, Kim B, Ramalaingam P et al (2019) Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-stimulated BV-2 microglia cell models. Molecules 24(6)

    Google Scholar 

  119. Kundu P, Das M, Tripathy K et al (2016) Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci 7(12):1658–1670

    Article  CAS  PubMed  Google Scholar 

  120. Ren CX, Li DD, Zhou QX et al. (2020) Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials 232:14

    Google Scholar 

  121. Lee CC, Tsai JP, Lee HL et al (2022) Blockage of autophagy increases timosaponin AIII-induced apoptosis of glioma cells in vitro and in vivo. Cells 12(1)

    Google Scholar 

  122. Ou G, Chen W, Yang M et al (2021) Preventive effect of nasal Timosaponin BII-loaded temperature-/ion-sensitive in situ hydrogels on Alzheimer’s disease. J Traditional Chinese Med Sci 8(1):59–64

    Article  CAS  Google Scholar 

  123. Zhang L, Liu X-g, Liu D-Q et al. (2020) A conditionally releasable “do not eat me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of Alzheimer's disease. Adv Funct Mat 30(24)

    Google Scholar 

  124. Garbayo E, Ansorena E, Lana H et al (2016) Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys. Biomaterials 110:11–23

    Google Scholar 

  125. Hyman C, Hofer M, Barde YA et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350(6315):230–232

    Article  CAS  PubMed  Google Scholar 

  126. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  127. Costantini LC, Isacson O (2000) Immunophilin ligands and GDNF enhance neurite branching or elongation from develo** dopamine neurons in culture. Exp Neurol 164(1):60–70

    Article  CAS  PubMed  Google Scholar 

  128. Lampe KJ, Kern DS, Mahoney MJ et al (2011) The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response. J Biomed Mater Res A 96(3):595–607

    Article  PubMed  Google Scholar 

  129. Ucar B, Humpel C (2019) Therapeutic efficacy of glial cell-derived neurotrophic factor loaded collagen scaffolds in ex vivo organotypic brain slice Parkinson's disease models. Brain Res Bull 149:86–95

    Google Scholar 

  130. Ucar B, Kajtez J, Foidl BM et al. (2021) Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomater 121:250–262

    Google Scholar 

  131. Wang TY, Bruggeman KF, Kauhausen JA et al. (2016) Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease. Biomaterials 74:89–98

    Google Scholar 

  132. Adil MM, Vazin T, Ananthanarayanan B et al. (2017) Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136:1–11

    Google Scholar 

  133. Struzyna LA, Browne KD, Brodnik ZD et al (2018) Tissue engineered nigrostriatal pathway for treatment of Parkinson’s disease. J Tissue Eng Regen Med 12(7):1702–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moriarty N, Pandit A, Dowd E (2017) Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  135. Moriarty N, Cabré S, Alamilla V et al (2019) Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats. Eur J Neurosci 49(4):487–496

    Article  PubMed  Google Scholar 

  136. Yu Y, Jiang X, Gong S et al (2014) The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin. Nanoscale 6(6):3250–3258

    Article  CAS  PubMed  Google Scholar 

  137. Cui GH, Shao SJ, Yang JJ et al (2016) Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Mol Neurobiol 53(2):1108–1123

    Article  CAS  PubMed  Google Scholar 

  138. Lee S, Trinh THT, Yoo M et al (2019) Self-assembling peptides and their application in the treatment of diseases. Int J Mol Sci 20(23)

    Google Scholar 

  139. Carneiro P, Morais S, Pereira MC (2019) Nanomaterials towards Biosensing of Alzheimer's disease biomarkers. Nanomaterials (Basel) 9(12)

    Google Scholar 

  140. Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A (2020) Electrochemical biosensors based on nanomaterials for early detection of Alzheimer's disease. Sensors (Basel) 20(17)

    Google Scholar 

  141. Ngowi EE, Wang YZ, Qian L et al (2021) The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front Bioeng Biotechnol 9:629832

    Google Scholar 

  142. Adhikary R, Sandbhor Gaikwad P, Banerjee R (2015) Nanotechnology platforms in Parkinson’s disease. ADMET & DMPK 3

    Google Scholar 

  143. Oh J, Yoo G, Chang YW et al. (2013) A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens Bioelectron 50:345–350

    Google Scholar 

  144. Kurkina T, Sundaram S, Sundaram RS et al (2012) Self-assembled electrical biodetector based on reduced graphene oxide. ACS Nano 6(6):5514–5520

    Article  CAS  PubMed  Google Scholar 

  145. Lisi S, Scarano S, Fedeli S et al. (2017) Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosens Bioelectron 93:289–292

    Google Scholar 

  146. An Y, Tang L, Jiang X et al (2010) A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry 16(48):14439–14446

    Article  CAS  PubMed  Google Scholar 

  147. Khatri A, Punjabi N, Ghosh D et al. (2018) Detection and differentiation of α-Synuclein monomer and fibril by chitosan film coated nanogold array on optical sensor platform. Sensors Actuat B: Chem 255:692–700

    Google Scholar 

  148. Tao D, Gu Y, Song S et al. (2020) Ultrasensitive detection of alpha-synuclein oligomer using a PolyD-glucosamine/gold nanoparticle/carbon-based nanomaterials modified electrochemical immunosensor in human plasma. Microchemical J 158

    Google Scholar 

  149. Yin Z, Cheng X, Wang G et al (2020) SPR immunosensor combined with Ti. Mikrochim Acta 187(9):509

    Article  CAS  PubMed  Google Scholar 

  150. Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Omidfar K, Khorsand F, Darziani Azizi M (2013) New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron 43:336–347

    Google Scholar 

  152. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Google Scholar 

  153. Liu L, Zhao F, Ma F et al (2013) Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1–16)-heme-modified gold nanoparticles. Biosens Bioelectron 49:231–235

    Google Scholar 

  154. Carneiro P, Loureiro J, Delerue-Matos C et al (2017) Alzheimer’s disease: development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide. Sensors Actuat B: Chem 239:157–165

    Google Scholar 

  155. Shui B, Tao D, Cheng J et al (2018) A novel electrochemical aptamer-antibody sandwich assay for the detection of tau-381 in human serum. Analyst 143(15):3549–3554

    Article  CAS  PubMed  Google Scholar 

  156. You X, Gopinath SCB, Lakshmipriya T et al (2019) High-affinity detection of alpha-synuclein by aptamer-gold conjugates on an amine-modified dielectric surface. J Anal Methods Chem 2019:6526850

    Google Scholar 

  157. Kumar J, Eraña H, López-Martínez E et al (2018) Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc Natl Acad Sci USA 115(13):3225–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu T, Chen C, Huang G et al (2016) Antibody modified-silver nanoparticles for colorimetric immuno sensing of Aβ(1–40/1–42) based on the interaction between β-amyloid and Cu2+. Sensors Actuat B: Chem 234:63–69

    Google Scholar 

  159. **a N, Wang X, Zhou B et al (2016) Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl Mater Interfaces 8(30):19303–19311

    Article  CAS  PubMed  Google Scholar 

  160. You M, Yang S, An Y et al. (2020) A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem 862

    Google Scholar 

  161. Luo S, Ma C, Zhu MQ et al (2020) Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer's disease. Front Cell Neurosci 14:21

    Google Scholar 

  162. de la Escosura-Muñiz A, Plichta Z, Horák D et al. (2015) Alzheimer's disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169

    Google Scholar 

  163. Cheng XR, Hau BY, Endo T et al. (2014) Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens Bioelectron 53:513–518

    Google Scholar 

  164. Wu L, Ji H, Sun H et al (2016) Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer’s disease. Chem Commun (Camb) 52(81):12080–12083

    Article  CAS  PubMed  Google Scholar 

  165. Mars A, Hamami M, Bechnak L et al (2018) Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of Alzheimer's disease. Anal Chim Acta 1036:141–146

    Google Scholar 

  166. Plissonneau M, Pansieri J, Heinrich-Balard L et al (2016) Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting. J Nanobiotechnology 14(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lee M-H, Liu K-T, Thomas JL et al. (2020) Peptide-imprinted poly(hydroxymethyl 3,4-ethylenedioxythiophene) nanotubes for detection of α synuclein in human brain. Organoids 3(8):8027–8036

    Google Scholar 

  168. Teleanu DM, Chircov C, Grumezescu AM et al. (2018) Impact of nanoparticles on brain health: an up to date overview. J Clin Med 7(12)

    Google Scholar 

  169. Tian X, Chong Y, Ge C (2020) Understanding the nano-bio interactions and the corresponding biological responses. Front Chem 8:446

    Google Scholar 

  170. Wang H, Wan KW, Shi XH (2019) Recent advances in nanozyme research. Adv Mater 31(45):10

    Article  Google Scholar 

  171. Yu DQ, Ma MM, Liu ZW, et al. (2020) MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer's disease model. Biomaterials 255(10)

    Google Scholar 

Download references

Funding

Compliance with Ethical Standards

Funding: Not applicable.

Disclosure of Interests: All authors declare they have no conflict of interest.

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei He or **aobo Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotha, S., Sriparna, M., Tyson, J., Li, A., He, W., Mao, X. (2024). Emerging Nanotechnology for the Treatment and Diagnosis of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD). In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Regenerative Medicine and Brain Repair. Stem Cell Biology and Regenerative Medicine, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-031-49744-5_5

Download citation

Publish with us

Policies and ethics

Navigation