Application of Federated Learning Techniques for Arrhythmia Classification Using 12-Lead ECG Signals

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2023)

Abstract

Artificial Intelligence-based (AI) analysis of large, curated medical datasets is promising for providing early detection, faster diagnosis, and more effective treatment using low-power Electrocardiography (ECG) monitoring devices information. However, accessing sensitive medical data from diverse sources is highly restricted since improper use, unsafe storage, or data leakage could violate a person’s privacy. This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG from 12-lead sensor arrays collected from six heterogeneous sources. We evaluated the capacity of the resulting models to achieve equivalent performance compared to state-of-the-art models trained in a Centralized Learning (CL) fashion. Moreover, we assessed the performance of our solution over Independent and Identical distributed (IID) and Non-IID federated data. Our methodology involves machine learning techniques based on Deep Neural Networks and Long-Short-Term Memory models. It has a robust data preprocessing pipeline with feature engineering, selection, and data balancing techniques. Our AI models demonstrated comparable performance to models trained using CL, IID, and Non-IID approaches. They showcased advantages in reduced complexity and faster training time, making them well-suited for cloud-edge architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 48.14
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 62.05
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  2. 2.

    Remark that several different interconnection architectures are used in ECG technologies available in the market and studied in the relevant literature, such as wireless technologies like WI-FI or BLE, or wire technologies such as USB, or non-volatile memory formats. Such interconnections aspects are beyond the scope of this paper.

  3. 3.

    Note that in case the recording has a different sampling frequency, various algorithms exist in the relevant literature to change the sampling frequency to a lower or a higher one without affecting the accuracy [66].

  4. 4.

    Note that ECG recordings that are longer than the agreed length can be split into multiple ones without loss of generality.

  5. 5.

    Code for morphological features: https://github.com/physionetchallenges/python-classifier-2020/blob/master/get_12ECG_features.py.

  6. 6.

    Code for spectral features: https://github.com/onlyzdd/ecg-diagnosis/blob/dfa9033d5ae7be135db63ff567e66fdb2b86d76d/expert_features.py.

  7. 7.

    TEAM2’s code: https://github.com/ZhaoZhibin/Physionet2020model.

References

  1. AbdulRahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., Guizani, M.: A survey on federated learning: the journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 8(7), 5476–5497 (2020)

    Article  Google Scholar 

  2. Al-Zaiti, S., Besomi, L.B.Z.: Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. National Library of Medicine (2020). https://doi.org/10.1038/s41467-020-17804-2

  3. Alday, E.A.P., et al.: Classification of 12-lead ecgs: the physionet/computing in cardiology challenge 2020. Physiol. Meas. 41(12), 124003 (2020)

    Article  MathSciNet  Google Scholar 

  4. Alday, E.A.P., et al.: Classification of 12-lead ECGs: the PhysioNet/computing in cardiology challenge 2020. Physiol. Meas. 41(12), 124003 (2020). https://doi.org/10.1088/1361-6579/abc960

    Article  MathSciNet  Google Scholar 

  5. Alsahaf, A., Petkov, N., Shenoy, V., Azzopardi, G.: A framework for feature selection through boosting. Expert Syst. Appl. 187, 115895 (2022)

    Article  Google Scholar 

  6. Ana Minchole, Julia Camps, A.L.: Machine learning in the electrocardiogram. In: National Library of Medicine, pp. S61–S64 (2019). https://doi.org/10.1016/j.jelectrocard.2019.08.008

  7. Arnold, D., Wilson, T.: What doctor? why AI and robotics will define new health. In: PwC (2017)

    Google Scholar 

  8. Asad, M., Moustafa, A., Ito, T.: Fedopt: towards communication efficiency and privacy preservation in federated learning. Appl. Sci. 10, 1–17 (2020). https://doi.org/10.3390/app10082864

    Article  Google Scholar 

  9. Asad, M., Moustafa, A., Ito, T., Aslam, M.: Evaluating the communication efficiency in federated learning algorithms (2020). https://doi.org/10.48550/ARXIV.2004.02738. https://arxiv.org/abs/2004.02738

  10. Attia, Z.I., et al.: An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394(10201), 861–867 (2019)

    Article  Google Scholar 

  11. Bogdanova, A., Attoh-Okine, N., Sakurai, T.: Risk and advantages of federated learning for health care data collaboration. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civil Eng. 6, 04020031 (2020). https://doi.org/10.1061/AJRUA6.0001078

  12. Bos, M.N., et al.: Automated comprehensive interpretation of 12-lead electrocardiograms using pre-trained exponentially dilated causal convolutional neural networks. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.253

  13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  14. Chen, J., et al.: SE-ECGNET: multi-scale se-net for multi-lead ECG data. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.085

  15. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785

  16. Dhal, P., Azad, C.: A comprehensive survey on feature selection in the various fields of machine learning. Appl. Intell. 1–39 (2022)

    Google Scholar 

  17. Fayyazifar, N., Ahderom, S., Suter, D., Maiorana, A., Dwivedi, G.: Impact of neural architecture design on cardiac abnormality classification using 12-lead ECG signals. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.161

  18. Gallo, C.: Artificial Neural Networks: tutorial, chap, p. 10 (2015)

    Google Scholar 

  19. Grandini, M., Bagli, E., Visani, G.: Metrics for multi-class classification: an overview (2020). https://doi.org/10.48550/ARXIV.2008.05756. https://arxiv.org/abs/2008.05756

  20. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  21. Hamet, P., Tremblay, J.: Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)

    Article  Google Scholar 

  22. Hannun, A.Y., Rajpurkar, P.H.M.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019). https://doi.org/10.1038/s41591-018-0268-3

    Article  Google Scholar 

  23. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  24. He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., Zhang, K.: The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25(1), 30–36 (2019)

    Article  Google Scholar 

  25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  26. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Mining Knowl. Manag. Process 5, 01–11 (2015). https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

  27. Hsu, P.Y., Hsu, P.H., Lee, T.H., Liu, H.L.: Multi-label arrhythmia classification from 12-lead electrocardiograms. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.134

  28. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification (2019). https://doi.org/10.48550/ARXIV.1909.06335. arxiv.org/abs/1909.06335

  29. Ibraimi, L., Selimi, M., Freitag, F.: Bepoch: improving federated learning performance in resource-constrained computing devices. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2021). https://doi.org/10.1109/GLOBECOM46510.2021.9685095

  30. Jamali-Rad, H., Abdizadeh, M., Singh, A.: Federated learning with taskonomy for non-iid data. IEEE Trans. Neural Netw. Learn. Syst. 34, 8719–8730 (2022)

    Article  Google Scholar 

  31. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-iid data silos: an experimental study. ar**v preprint ar**v:2102.02079 (2021)

  32. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of fedavg on non-iid data (2019). https://doi.org/10.48550/ARXIV.1907.02189. arxiv.org/abs/1907.02189

  33. Lin, C.C., Yang, C.M.: Heartbeat classification using normalized RR intervals and wavelet features. In: 2014 International Symposium on Computer, Consumer and Control, pp. 650–653. IEEE (2014)

    Google Scholar 

  34. Ling, C.X., Li, C.: Data mining for direct marketing: problems and solutions. In: KDD, vol. 98, pp. 73–79 (1998)

    Google Scholar 

  35. Mariappan, P.M., Raghavan, D.R., Aleem, S.H.A., Zobaa, A.F.: Effects of electromagnetic interference on the functional usage of medical equipment by 2g/3g/4g cellular phones: a review. J. Adv. Res. 7(5), 727–738 (2016)

    Article  Google Scholar 

  36. McKinney, S.M., et al.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  37. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  38. For the Advancement of Medical Instrumentation, A.: Testing and reporting performance results of cardiac rhythm and st segment measurement algorithms: American National Standard 2013. ANSI/AAMI EC 57, 2012 (2013)

    Google Scholar 

  39. Min, S., et al.: Bag of tricks for electrocardiogram classification with deep neural networks. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.328

  40. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  41. Mori, J., Teranishi, I., Furukawa, R.: Continual horizontal federated learning for heterogeneous data (2022). https://doi.org/10.48550/ARXIV.2203.02108. arxiv.org/abs/2203.02108

  42. Müller, H., Holzinger, A., Plass, M., Brcic, L., Stumptner, C., Zatloukal, K.: Explainability and causability for artificial intelligence-supported medical image analysis in the context of the european in vitro diagnostic regulation. New Biotechnol. 70, 67–72 (2022)

    Article  Google Scholar 

  43. Murat, F., Yildirim, O., Talo, M., Baloglu, U.B., Demir, Y., Acharya, U.R.: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol. Med. 120, 103726 (2020). https://doi.org/10.1016/j.compbiomed.2020.103726. https://www.sciencedirect.com/science/article/pii/S0010482520301104

  44. Natarajan, A., et al.: A wide and deep transformer neural network for 12-lead ECG classification. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.107

  45. Ookura, S., Mori, H.: An efficient method for wind power generation forecasting by LSTM in consideration of overfitting prevention. IFAC-PapersOnLine 53(2), 12169–12174 (2020)

    Article  Google Scholar 

  46. Panch, T., Mattie, H., Celi, L.A.: The “inconvenient truth” about AI in healthcare. NPJ Dig. Med. 2(1), 1–3 (2019)

    Google Scholar 

  47. Perez Alday, E.A., Gu, A.S.A.: Classification of 12-lead ECGs: the physionet/computing in cardiology challenge 2020. Physiol. Meas. (2020). https://doi.org/10.1088/1361-6579/abc960. https://moody-challenge.physionet.org/2020/papers/

  48. Rajkumar, A., Ganesan, M., Lavanya, R.: Arrhythmia classification on ECG using deep learning. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 365–369. IEEE (2019)

    Google Scholar 

  49. Raza, A., Tran, K.P., Koehl, L., Li, S.: Designing ECG monitoring healthcare system with federated transfer learning and explainable AI. Knowl.-Based Syst. 236, 107763 (2022)

    Article  Google Scholar 

  50. Rocher, L., Hendrickx, J.M., De Montjoye, Y.A.: Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  51. Rohmantri, R., Surantha, N.: Arrhythmia classification using 2D convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 11(4), 201–208 (2020)

    Google Scholar 

  52. Rosychuk, R.J., Mariathas, H.H., Graham, M.M., Holroyd, B.R., Rowe, B.H.: Geographic clustering of emergency department presentations for atrial fibrillation and flutter in Alberta, Canada. Acad. Emerg. Med. 22(8), 965–975 (2015)

    Article  Google Scholar 

  53. da S. Luz, E.J., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog. Biomed. 127, 144–164 (2016). https://doi.org/10.1016/j.cmpb.2015.12.008. https://www.sciencedirect.com/science/article/pii/S0169260715003314

  54. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  55. Serhani, M.A., El Kassabi, H.T., Ismail, H., Nujum Navaz, A.: ECG monitoring systems: review, architecture, processes, and key challenges. Sensors 20(6), 1796 (2020)

    Article  Google Scholar 

  56. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  57. Tang, R., Luo, J., Qian, J., **, J.: Personalized federated learning for ECG classification based on feature alignment. Secur. Commun. Netw. 2021, 1–9 (2021)

    Google Scholar 

  58. Van Panhuis, W.G., et al.: A systematic review of barriers to data sharing in public health. BMC Public Health 14(1), 1–9 (2014)

    Google Scholar 

  59. Wang, F., Casalino, L.P., Khullar, D.: Deep learning in medicine-promise, progress, and challenges. JAMA Int. Med. 179(3), 293–294 (2019)

    Article  Google Scholar 

  60. Wang, H., et al.: Attack of the tails: yes, you really can backdoor federated learning (2020). https://doi.org/10.48550/ARXIV.2007.05084. arxiv.org/abs/2007.05084

  61. Wodschow, K., Bihrmann, K., Larsen, M.L., Gislason, G., Ersbøll, A.K.: Geographical variation and clustering are found in atrial fibrillation beyond socioeconomic differences: a Danish cohort study, 1987–2015. Int. J. Health Geogr. 20(1), 1–10 (2021)

    Article  Google Scholar 

  62. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  63. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019). https://doi.org/10.48550/ARXIV.1902.04885. arxiv.org/abs/1902.04885

  64. Zhang, M., Wang, Y., Luo, T.: Federated learning for arrhythmia detection of non-iid ECG. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1176–1180. IEEE (2020)

    Google Scholar 

  65. Zhao, Z., et al.: Adaptive lead weighted resnet trained with different duration signals for classifying 12-lead ECGs. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.112

  66. Zhao, Z., et al.: Adaptive lead weighted resnet trained with different duration signals for classifying 12-lead ECGs. In: 2020 Computing in Cardiology, pp. 1–4. IEEE (2020)

    Google Scholar 

  67. Zhu, Z., et al.: Classification of cardiac abnormalities from ECG signals using se-resnet. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.281

  68. Zisou, C., Sochopoulos, A., Kitsios, K.: Convolutional recurrent neural network and lightgbm ensemble model for 12-lead ecg classification. In: 2020 Computing in Cardiology, pp. 1–4 (2020). https://doi.org/10.22489/CinC.2020.417

Download references

Acknowledgements

This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU and PNRR351 TECHNOPOLE - NEXT GEN EU Roma Technopole - Digital Transition, FP2 - Energy transition and digital transition in urban regeneration and construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mauricio Jimenez Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez Gutierrez, D.M., Hassan, H.M., Landi, L., Vitaletti, A., Chatzigiannakis, I. (2024). Application of Federated Learning Techniques for Arrhythmia Classification Using 12-Lead ECG Signals. In: Chatzigiannakis, I., Karydis, I. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2023. Lecture Notes in Computer Science, vol 14053. Springer, Cham. https://doi.org/10.1007/978-3-031-49361-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49361-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49360-7

  • Online ISBN: 978-3-031-49361-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation