Anisotropic Fanning Aware Low-Rank Tensor Approximation Based Tractography

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

Low-rank higher-order tensor approximation has been used successfully to extract discrete directions for tractography from continuous fiber orientation density functions (fODFs). However, while it accounts for fiber crossings, it has so far ignored fanning, which has led to incomplete reconstructions. In this work, we integrate an anisotropic model of fanning based on the Bingham distribution into a recently proposed tractography method that performs low-rank approximation with an Unscented Kalman Filter. Our technical contributions include an initialization scheme for the new parameters, which is based on the Hessian of the low-rank approximation, pre-integration of the required convolution integrals to reduce the computational effort, and representation of the required 3D rotations with quaternions. Results on 12 subjects from the Human Connectome Project confirm that, in almost all considered tracts, our extended model significantly increases completeness of the reconstruction, at acceptable excess and additional computational cost. Its results are also more accurate than those from a simpler, isotropic fanning model that is based on Watson distributions.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 422414649. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankele, M., Lim, L.H., Groeschel, S., Schultz, T.: Versatile, robust, and efficient tractography with constrained higher-order tensor fODFs. Int. J. Comput. Assisted Radiol. Surg. 12(8), 1257–1270 (2017). https://doi.org/10.1007/s11548-017-1593-6

    Article  Google Scholar 

  2. Bernal-Polo, P., Martínez-Barberá, H.: Kalman filtering for attitude estimation with quaternions and concepts from manifold theory. Sensors 19(1), 149 (2019). https://doi.org/10.3390/s19010149

    Article  Google Scholar 

  3. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2(6), 1201–1225 (1974). https://doi.org/10.1214/aos/1176342874

    Article  MathSciNet  Google Scholar 

  4. Chen, Z., et al.: Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. Int. J. Comput. Assisted Radiol. Surg. 11(8), 1475–1486 (2016). https://doi.org/10.1007/s11548-015-1344-5

    Article  Google Scholar 

  5. Cheng, G., Salehian, H., Forder, J.R., Vemuri, B.C.: Tractography from HARDI using an intrinsic unscented Kalman filter. IEEE Trans. Med. Imaging 34(1), 298–305 (2015). https://doi.org/10.1109/TMI.2014.2355138

    Article  Google Scholar 

  6. Dalamagkas, K., et al.: Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav. 14, 696–714 (2020). https://doi.org/10.1007/s11682-018-0006-y

    Article  Google Scholar 

  7. Dell’Acqua, F., Tournier, J.D.: Modelling white matter with spherical deconvolution: how and why? NMR Biomed. 32(4) (2018). https://doi.org/10.1002/nbm.3945

  8. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

    Article  Google Scholar 

  9. Grün, J., Gröschel, S., Schultz, T.: Spatially regularized low-rank tensor approximation for accurate and fast tractography. NeuroImage 271 (2023). https://doi.org/10.1016/j.neuroimage.2023.120004

  10. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993). https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  11. Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A.: Diffusion MRI fiber tractography of the brain. NMR Biomed. 32(4), e3785 (2019). https://doi.org/10.1002/nbm.3785

    Article  Google Scholar 

  12. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004). https://doi.org/10.1109/JPROC.2003.823141

    Article  Google Scholar 

  13. Kaden, E., Knösche, T.R., Anwander, A.: Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. Neuroimage 37(2), 474–488 (2007). https://doi.org/10.1016/j.neuroimage.2007.05.012

    Article  Google Scholar 

  14. Kraft, E.: A quaternion-based unscented Kalman filter for orientation tracking. In: Proceedings of the Sixth International Conference of Information Fusion, vol. 1, pp. 47–54 (2003). https://doi.org/10.1109/ICIF.2003.177425

  15. Maier-Hein, K., et al.: The challenge of map** the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017). https://doi.org/10.1038/s41467-017-01285-x

    Article  Google Scholar 

  16. Malcolm, J., Shenton, M., Rathi, Y.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29, 1664–1675 (2010). https://doi.org/10.1109/TMI.2010.2048121

    Article  Google Scholar 

  17. Malcolm, J.G., Michailovich, O., Bouix, S., Westin, C.F., Shenton, M.E., Rathi, Y.: A filtered approach to neural tractography using the Watson directional function. Med. Image Anal. 14(1), 58–69 (2010). https://doi.org/10.1016/j.media.2009.10.003

    Article  Google Scholar 

  18. Riffert, T.W., Schreiber, J., Anwander, A., Knösche, T.R.: Beyond fractional anisotropy: extraction of bundle-specific structural metrics from crossing fiber models. Neuroimage 100, 176–191 (2014). https://doi.org/10.1016/j.neuroimage.2014.06.015

    Article  Google Scholar 

  19. Schultz, T., Kindlmann, G.: A maximum enhancing higher-order tensor glyph. Comput. Graph. Forum 29(3), 1143–1152 (2010). https://doi.org/10.1111/j.1467-8659.2009.01675.x

    Article  Google Scholar 

  20. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008). https://doi.org/10.1109/TVCG.2008.128

    Article  Google Scholar 

  21. Sotiropoulos, S.N., Behrens, T.E., Jbabdi, S.: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI. Neuroimage 60(2), 1412–1425 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.056

    Article  Google Scholar 

  22. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007). https://doi.org/10.1016/j.neuroimage.2007.02.016

    Article  Google Scholar 

  23. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  Google Scholar 

  24. Wakana, S., et al.: Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36, 630–644 (2007). https://doi.org/10.1016/j.neuroimage.2007.02.049

    Article  Google Scholar 

  25. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg - fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018). https://doi.org/10.1016/j.neuroimage.2018.07.070

    Article  Google Scholar 

  26. Wiener, T.F.: Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments. Ph.D. thesis, Massachusetts Institute of Technology (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gruen, J., Sieg, J., Schultz, T. (2023). Anisotropic Fanning Aware Low-Rank Tensor Approximation Based Tractography. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation