Quantitative Analysis of Eicosanoids and Other Oxylipins

  • Chapter
  • First Online:
A Practical Guide to Metabolomics Applications in Health and Disease

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 340 Accesses

Abstract

Eicosanoids and other oxylipins are oxygenation products from polyunsaturated fatty acids (PUFA). They can be formed non-enzymatically by (lipid) autoxidation as well as by specific enzymatic reactions. In mammals, enzymatic formation comprises three main pathways catalyzed by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases (CYP). Several of the oxylipins are highly potent lipid mediators, playing a key role in the regulation of pain, fever, and inflammation. Thus, oxylipin formation is a major drug target. In fact, common pharmaceuticals being sold without a prescription, e.g., non-steroidal anti-inflammatory drugs (NSAID), directly target COX.

In this chapter, a detailed protocol is described to investigate oxylipin formation during autoxidation and upon an inflammatory stimulus in cell culture. The low-abundant lipid mediators are quantified by means of targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). The experiments demonstrate that oxylipins are markers of cell biology, reflecting the redox status/oxidative stress on the one hand and the cellular inflammatory response on the other.

Based on a selected set of oxylipins the students learn how to set up a quantitative LC-MS/MS method and apply it to biological samples. With the detailed protocol, cell culture experiments can be rapidly set up in the laboratory to investigate the effects of oxidative stress or inflammatory stimuli in cells. The strategy also allows to test new compounds for their efficacy to reduce oxidative stress or to alleviate proinflammatory lipid mediator formation. Thus, the described procedures facilitate the implementation of individual research projects in advanced practical student courses.

Overall, the experiments lead to a comprehensive understanding of quantitative LC-MS/MS as well as basic cell culture experiments to study the bioactivity of new compounds. The investigation and interpretation of the results enable to understand oxylipin formation and their role in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 114.39
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxy-2-nonenal

ARA:

Arachidonic acid (C20:4 n6)

BCA:

Bicinchoninic acid

BHT:

Butylated hydroxytoluene

CE:

Collision energy

COX:

Cyclooxygenase

CXP:

Collision cell exit potential

CYP:

Cytochrome P450 monooxygenase

DHA:

Docosahexaenoic acid (C22:6 n3)

DiHETE:

Dihydroxy-eicosatetraenoic acid

DiHETrE:

Dihydroxy-eicosatrienoic acid

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

DP:

Declustering potential

EDTA:

Ethylenediaminetetraacetic acid

EP:

Entrance potential

EPA:

Eicosapentaenoic acid (C20:5 n3)

EpETrE:

Epoxy-eicosatrienoic acid

ESI:

Electrospray ionization

EtOH:

Ethanol

FCS:

Fetal calf serum

GIT:

Gastrointestinal tract

HAc:

Acetic acid

HETE:

Hydroxy-eicosatetraenoic acid

HHT/HHTrE:

Hydroxy-heptadecatrienoic acid

HpETE:

Hydroperoxy-eicosatetraenoic acid; hydroperoxy-ARA

IC50:

Half maximal inhibitory concentration

IS:

Internal standard

IsoP:

Isoprostane

KOH:

Potassium hydroxide

LC:

Liquid chromatography

LLOQ:

Lower limit of quantification

LOD:

Limit of detection

LOX:

Lipoxygenase

LPS:

Lipopolysaccharide

LT:

Leukotriene

LTA4:

5S-Trans-5,6-oxido-7E,9E,11Z,14Z-eicosatetraenoic acid

LTAH:

Leukotriene A4 hydrolase

LTB4:

5S,12R-Dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

m/z:

Mass-to-charge ratio

MDA:

Malondialdehyde

MeOH:

Methanol

MRM:

Multiple reaction monitoring

MS :

Mass spectrometry

MS/MS:

Tandem mass spectrometry

n3-PUFA:

Omega-3 polyunsaturated fatty acid

n6-PUFA:

Omega-6 polyunsaturated fatty acid

NSAID:

Non-steroidal anti-inflammatory drug

PBS:

Phosphate buffered saline

PCR:

Polymerase chain reaction

PG:

Prostaglandin

PGF2α:

9α,11α,15S-Trihydroxy-prosta-5Z,13E-dien-1-oic acid

PUFA:

Polyunsaturated fatty acid

ROOH:

Organic hydroperoxide

RP:

Reversed-phase

rpm:

Rounds per minute

RPMI:

Roswell Park Memorial Institute (cell culture medium)

RSD:

Relative standard deviation

S/N:

Signal-to-noise ratio

SD:

Standard deviation

SPE:

Solid phase extraction

SRM:

Selected reaction monitoring

t-AUCB:

Trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid

t-BOOH:

Tert-butyl hydroperoxide

TGF-β1:

Transforming growth factor-β1

tR:

Retention time

TX:

Thromboxane

ULOQ:

Upper limit of quantification

UPLC:

Ultra-high-performance liquid chromatography

References

  1. Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: analytical and inter-individual variabilities. Free Radic Biol Med. 2019;144:72–89.

    Article  CAS  PubMed  Google Scholar 

  2. Willenberg I, Ostermann AI, Schebb NH. Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins. Anal Bioanal Chem. 2015;407(10):2675–83.

    Article  CAS  PubMed  Google Scholar 

  3. Buczynski MW, Dumlao DS, Dennis EA. Thematic review series: proteomics – an integrated omics analysis of eicosanoid biology. J Lipid Res. 2009;50(6):1015–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostermann AI, West AL, Schoenfeld K, Browning LM, Walker CG, Jebb SA, et al. Plasma oxylipins respond in a linear dose–response manner with increased intake of EPA and DHA: results from a randomized controlled trial in healthy humans. Am J Clin Nutr. 2019;109(5):1251–63.

    Article  PubMed  Google Scholar 

  5. Frankel EN. Lipid Oxidation. 2nd ed. Bridgwater: The Oily Press an Imprint of PJ Barnes & Associates; 2005.

    Book  Google Scholar 

  6. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–72.

    Article  CAS  PubMed  Google Scholar 

  7. Sies H, Jones D. Oxidative stress. Encyclopedia of stress. 2nd ed. New York: Academic Press; 2007. p. 45–8.

    Book  Google Scholar 

  8. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86(1):715–48.

    Article  CAS  PubMed  Google Scholar 

  9. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jahn U, Galano JM, Durand T. Beyond prostaglandins - Chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem. 2008;47(32):5894–955.

    Article  CAS  Google Scholar 

  11. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ II. Isoprostane generation and function. Chem Rev. 2011;111(10):5973–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rund KM, Heylmann D, Seiwert N, Wecklein S, Oger C, Galano J-M, et al. Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress. Prostaglandins Other Lipid Mediat. 2019:144.

    Google Scholar 

  13. Smith WL, Urade Y, Jakobsson P-J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111(10):5821–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hartung NM, Mainka M, Pfaff R, Kuhn M, Biernacki S, Zinnert L, et al. Development of a quantitative proteomics approach for cyclooxygenases and lipoxygenases in parallel to quantitative oxylipin analysis allowing the comprehensive investigation of the arachidonic acid cascade. Anal Bioanal Chem. 2023;515(5):913–33.

    Article  Google Scholar 

  15. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69(1):145–82.

    Article  CAS  PubMed  Google Scholar 

  16. Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids. 2015;1851(4):340–55.

    CAS  Google Scholar 

  17. Gottschall H, Schmöcker C, Hartmann D, Rohwer N, Rund K, Kutzner L, et al. Aspirin alone and combined with a statin suppresses eicosanoid formation in human colon tissue. J Lipid Res. 2018;59(5):864–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110(5):255–8.

    Article  CAS  PubMed  Google Scholar 

  19. Haeggstrom JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111(10):5866–98.

    Article  PubMed  Google Scholar 

  20. Westphal C, Konkel A, Schunck W-H. Cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids and their role in cardiovascular disease. In: Hrycay EG, Bandiera SM, editors. Monooxygenase, peroxidase and peroxygenase properties and mechanisms of cytochrome P450. Cham: Springer; 2015. p. 151–87.

    Chapter  Google Scholar 

  21. Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol. 2013;53(1):37–58.

    Article  CAS  PubMed  Google Scholar 

  22. Kampschulte N, Alasmer A, Empl MT, Krohn M, Steinberg P, Schebb NH. Dietary polyphenols inhibit the cytochrome P450 monooxygenase branch of the arachidonic acid cascade with remarkable structure-dependent selectivity and potency. J Agric Food Chem. 2020;68(34):9235–44.

    Article  CAS  PubMed  Google Scholar 

  23. Rund KM, Ostermann AI, Kutzner L, Galano J-M, Oger C, Vigor C, et al. Development of an LC-ESI(−)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta. 2018;1037:63–74.

    Article  CAS  PubMed  Google Scholar 

  24. Kutzner L, Rund KM, Ostermann AI, Hartung NM, Galano J-M, Balas L, et al. Development of an optimized LC-MS method for the detection of specialized pro-resolving mediators in biological samples. Front Pharmacol. 2019:10.

    Google Scholar 

  25. Koch E, Mainka M, Dalle C, Ostermann AI, Rund KM, Kutzner L, et al. Stability of oxylipins during plasma generation and long-term storage. Talanta. 2020;217:121074.

    Article  CAS  PubMed  Google Scholar 

  26. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421–6.

    Article  CAS  PubMed  Google Scholar 

  27. Mulac D, Lepski S, Ebert F, Schwerdtle T, Humpf H-U. Cytotoxicity and fluorescence visualization of ergot alkaloids in human cell lines. J Agric Food Chem. 2013;61(2):462–71.

    Article  CAS  PubMed  Google Scholar 

  28. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Frontiers. 2020;1(3):332–49.

    Article  Google Scholar 

  29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  30. Koch E, Wiebel M, Hopmann C, Kampschulte N, Schebb NH. Rapid quantification of fatty acids in plant oils and biological samples by LC-MS. Anal Bioanal Chem. 2021;413(21):5439–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mainka M, Dalle C, Pétéra M, Dalloux-Chioccioli J, Kampschulte N, Ostermann AI, et al. Harmonized procedures lead to comparable quantification of total oxylipins across laboratories. J Lipid Res. 2020;61(11):1424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schebb NH, Kühn H, Kahnt AS, Rund KM, O’Donnell VB, Flamand N, et al. Formation, signaling and occurrence of specialized pro-resolving lipid mediators—what is the evidence so far? Front Pharmacol. 2022;13

    Google Scholar 

  33. Jiang H, McGiff JC, Quilley J, Sacerdoti D, Reddy LM, Falck JR, et al. Identification of 5,6-trans-epoxyeicosatrienoic acid in the phospholipids of red blood cells. J Biol Chem. 2004;279(35):36412–8.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang H, Quilley J, Reddy LM, Falck JR, Wong PY, McGiff JC. Red blood cells: reservoirs of cis- and trans-epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat. 2005;75(1–4):65–78.

    Article  CAS  PubMed  Google Scholar 

  35. Aliwarga T, Raccor BS, Lemaitre RN, Sotoodehnia N, Gharib SA, Xu L, et al. Enzymatic and free radical formation of cis- and trans-epoxyeicosatrienoic acids in vitro and in vivo. Free Radic Biol Med. 2017;112:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Helge Schebb .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary material

(DOCX 25 kb)

Table S1

(XLSX 16 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rund, K.M., Schebb, N.H. (2023). Quantitative Analysis of Eicosanoids and Other Oxylipins. In: Ivanisevic, J., Giera, M. (eds) A Practical Guide to Metabolomics Applications in Health and Disease. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-44256-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44256-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44255-1

  • Online ISBN: 978-3-031-44256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation