A Lipidome-Wide Association Study: Data Processing, Annotation, and Analysis Workflow Using MS-DIAL and R

  • Chapter
  • First Online:
A Practical Guide to Metabolomics Applications in Health and Disease

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 328 Accesses

Abstract

This section provides the theoretical background on metabolic phenoty** and its application to human research. We highlight major determinants of the serum lipid composition and describe the principles of mass spectrometry (MS)-based lipidomics as a tool to uncover sex-related differences. Using healthy young (in their twenties) and aged (in their seventies) participants from the Complete Health cohort, we illustrate the workflow on how MS-based lipid signatures can be translated into biologically and physiologically relevant information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medina J, et al. Omic-scale high-throughput quantitative LC–MS/MS approach for circulatory lipid phenoty** in clinical research. Anal Chem. 2023;95:3168–79.

    Article  CAS  PubMed  Google Scholar 

  2. Huynh K, et al. High-throughput plasma lipidomics: detailed map** of the associations with cardiometabolic risk factors. Cell Chem Biol. 2019;26:71–84.e74.

    Article  CAS  PubMed  Google Scholar 

  3. Després J-P. Predicting longevity using metabolomics: a novel tool for precision lifestyle medicine? Nat Rev Cardiol. 2020;17:67–8.

    Article  PubMed  Google Scholar 

  4. Selby K, et al. Low statin use in adults hospitalized with acute coronary syndrome. Prevent Med. 2015;77:131–6.

    Article  Google Scholar 

  5. Carrard J, et al. Metabolic view on human healthspan: a lipidome-wide association study. Metabolites. 2021;11:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beyene HB, et al. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: evidence from two large population cohort studies. PLoS Biol. 2020;18:e3000870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lange M, et al. AdipoAtlas: a reference lipidome for human white adipose tissue. Cell Rep Med. 2021;2:100407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Züllig T, Köfeler HC. High resolution mass spectrometry in lipidomics. Mass Spectrom Rev. 2021;40:162–76.

    Article  PubMed  Google Scholar 

  9. Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. METLIN MS(2) molecular standards database: a broad chemical and biological resource. Nat Methods. 2020;17:953–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wishart DS, et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucl Acids Res. 2022;50:D622–d631.

    Article  CAS  PubMed  Google Scholar 

  11. Kind T, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10:755–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horai H, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14.

    Article  CAS  PubMed  Google Scholar 

  13. Tsugawa H, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol. 2020;38:1159–63.

    Article  CAS  PubMed  Google Scholar 

  15. Gerl MJ, et al. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol. 2019;17:e3000443.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chapman MJ, et al. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res. 2020;61:911–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeda H, et al. Lipid profiling of serum and lipoprotein fractions in response to pitavastatin using an animal model of familial hypercholesterolemia. J Proteome Res. 2020;19:1100–8.

    Article  CAS  PubMed  Google Scholar 

  18. Lu J, et al. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic chinese adults. Diabetes Care. 2019;42:2117–26.

    Article  CAS  PubMed  Google Scholar 

  19. Pino MF, et al. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics. 2019;51:586–95.

    Article  CAS  PubMed  Google Scholar 

  20. Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101:9–20.

    Article  CAS  PubMed  Google Scholar 

  21. Chua EC, et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci USA. 2013;110:14468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gooley JJ. Circadian regulation of lipid metabolism. Proc Nutr Soc. 2016;75:440–50.

    Article  CAS  PubMed  Google Scholar 

  23. Hyötyläinen T, Orešič M. Optimizing the lipidomics workflow for clinical studies—practical considerations. Anal Bioanal Chem. 2015;407:4973–93.

    Article  PubMed  Google Scholar 

  24. Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1:103–13.

    Article  Google Scholar 

  25. Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: an alternative to least squares means. Am Stat. 1980;34:216–21.

    Google Scholar 

  26. Introduction to SAS. UCLA: Statistical Consulting Group. Accessed September 16, 2020. https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqhow-do-i-interpret-a-regression-model-when-some-variables-are-log-transformed/.

  27. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodologic). 1995;57:289–300.

    Google Scholar 

  28. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/

    Google Scholar 

  29. Henglin M, et al. A single visualization technique for displaying multiple metabolite-phenotype associations. Metabolites. 2019;9

    Google Scholar 

  30. Wagner J, et al. Functional aging in health and heart failure: the COmPLETE Study. BMC Cardiovasc Disorders. 2019;19:180.

    Article  Google Scholar 

  31. Wagner J, et al. Functional aging in health and heart failure: the COmPLETE Study. BMC Cardiovasc Disord. 2019;19:180.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Esliger DW, et al. Validation of the GENEA Accelerometer. Med Sci Sports Exer. 2011;43:1085–93.

    Article  Google Scholar 

  33. Dekermanjian JP, Shaddox E, Nandy D, Ghosh D, Kechris K. Mechanism-aware imputation: a two-step approach in handling missing values in metabolomics. BMC Bioinformatics. 2022;23:179.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wei R, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Scientific Reports. 2018;8:663.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bull FC, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62.

    Article  PubMed  Google Scholar 

  36. Gonzalez-Covarrubias V, et al. Lipidomics of familial longevity. Aging Cell. 2013;12:426–34.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson LC, et al. The plasma metabolome as a predictor of biological aging in humans. GeroScience. 2019;41:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mach F, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European heart journal. 2019;41:111–88.

    Article  Google Scholar 

  39. Miller M, et al. Triglycerides and cardiovascular disease. Circulation. 2011;123:2292–333.

    Article  PubMed  Google Scholar 

  40. Laaksonen R, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hilvo M, et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur Heart J. 2019;41:371–80.

    Article  Google Scholar 

  42. Havulinna AS, et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arteriosc Thromb Vasc Biol. 2016;36:2424–30.

    Article  CAS  Google Scholar 

  43. Meeusen JW, et al. Plasma ceramides. Arteriosc Thromb Vasc Biol. 2018;38:1933–9.

    Article  CAS  Google Scholar 

  44. Chew WS, et al. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight. 2019;5

    Google Scholar 

  45. Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365:1812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chu SH, et al. Integration of metabolomic and other omics data in population-based study designs: an epidemiological perspective. Metabolites. 2019;9:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Salamin , Justin Carrard or Julijana Ivanisevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salamin, O., Carrard, J., Teav, T., Schmidt-Trucksäss, A., Gallart-Ayala, H., Ivanisevic, J. (2023). A Lipidome-Wide Association Study: Data Processing, Annotation, and Analysis Workflow Using MS-DIAL and R. In: Ivanisevic, J., Giera, M. (eds) A Practical Guide to Metabolomics Applications in Health and Disease. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-44256-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44256-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44255-1

  • Online ISBN: 978-3-031-44256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation