Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT Volumes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Atrial Fibrillation (AF) is characterized by rapid, irregular heartbeats, and can lead to fatal complications such as heart failure. The disease is divided into two sub-types based on severity, which can be automatically classified through CT volumes for disease screening of severe cases. However, existing classification approaches rely on generic radiomic features that may not be optimal for the task, whilst deep learning methods tend to over-fit to the high-dimensional volume inputs. In this work, we propose a novel radiomics-informed deep-learning method, RIDL, that combines the advantages of deep learning and radiomic approaches to improve AF sub-type classification. Unlike existing hybrid techniques that mostly rely on naïve feature concatenation, we observe that radiomic feature selection methods can serve as an information prior, and propose supplementing low-level deep neural network (DNN) features with locally computed radiomic features. This reduces DNN over-fitting and allows local variations between radiomic features to be better captured. Furthermore, we ensure complementary information is learned by deep and radiomic features by designing a novel feature de-correlation loss. Combined, our method addresses the limitations of deep learning and radiomic approaches and outperforms state-of-the-art radiomic, deep learning, and hybrid approaches, achieving 86.9% AUC for the AF sub-type classification task. Code is available at https://github.com/xmed-lab/RIDL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Cui, Y., et al.: A ct-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study. EClinicalMedicine 46, 101348 (2022)

    Article  Google Scholar 

  3. Gaeta, M., et al.: Is epicardial fat depot associated with atrial fibrillation? a systematic review and meta-analysis. Europace 19(5), 747–752 (2017)

    Article  Google Scholar 

  4. Go, A.S., et al.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (atria) study. Jama 285(18), 2370–2375 (2001)

    Article  Google Scholar 

  5. Gomez-Outes, A., Lagunar-Ruiz, J., Terleira-Fernandez, A.I., Calvo-Rojas, G., Suárez-Gea, M.L., Vargas-Castrillon, E.: Causes of death in anticoagulated patients with atrial fibrillation. J. Am. Coll. Cardiol. 68(23), 2508–2521 (2016)

    Article  Google Scholar 

  6. He, K., Fan, H., Wu, Y., **e, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  7. Huber, A.T., et al.: The relationship between enhancing left atrial adipose tissue at ct and recurrent atrial fibrillation. Radiology 305(1), 56–65 (2022)

    Article  Google Scholar 

  8. January, C.T., et al.: 2014 aha/acc/hrs guideline for the management of patients with atrial fibrillation: a report of the American college of cardiology/american heart association task force on practice guidelines and the heart rhythm society. J. Am. Coll. Cardiol. 64(21), e1–e76 (2014)

    Article  Google Scholar 

  9. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: Generalization gap and sharp minima. ar**v preprint ar**v:1609.04836 (2016)

  10. Lee, H.Y., et al.: Atrial fibrillation and the risk of myocardial infarction: a nation-wide propensity-matched study. Sci. Rep. 7(1), 12716 (2017)

    Article  Google Scholar 

  11. Lee, J., et al.: Moving from 2d to 3d: volumetric medical image classification for rectal cancer staging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 780–790. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16437-8_75

    Chapter  Google Scholar 

  12. Li, Q., et al.: A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci. Rep. 7(1), 14331 (2017)

    Article  MathSciNet  Google Scholar 

  13. Pastori, D., et al.: Incidence of myocardial infarction and vascular death in elderly patients with atrial fibrillation taking anticoagulants: relation to atherosclerotic risk factors. Chest 147(6), 1644–1650 (2015)

    Article  Google Scholar 

  14. Saeed, N., Sobirov, I., Al Majzoub, R., Yaqub, M.: Tmss: An end-to-end transformer-based multimodal network for segmentation and survival prediction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 319–329. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16449-1_31

    Chapter  Google Scholar 

  15. Shamloo, A.S., et al.: Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? a systematic review and meta-analysis. IJC Heart Vascul. 22, 132–138 (2019)

    Article  Google Scholar 

  16. Sun, Q., et al.: Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front. Oncol. 10, 53 (2020)

    Article  Google Scholar 

  17. Truhn, D., Schrading, S., Haarburger, C., Schneider, H., Merhof, D., Kuhl, C.: Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast mri. Radiology 290(2), 290–297 (2019)

    Article  Google Scholar 

  18. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Canc. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  19. Wang, S., et al.: A deep learning radiomics model to identify poor outcome in covid-19 patients with underlying health conditions: a multicenter study. IEEE J. Biomed. Health Inf. 25(7), 2353–2362 (2021)

    Article  MathSciNet  Google Scholar 

  20. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  21. Wu, Z., **ong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  22. Yang, M., et al.: Development and validation of a machine learning-based radiomics model on cardiac computed tomography of epicardial adipose tissue in predicting characteristics and recurrence of atrial fibrillation. Front. Cardiovasc. Med. 9, 813085 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X., et al.: Deep learning with radiomics for disease diagnosis and treatment: challenges and potential. Front. Oncol. 12, 773840 (2022)

    Article  Google Scholar 

  24. Zhao, Z., Yang, G.: Unsupervised contrastive learning of radiomics and deep features for label-efficient tumor classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 252–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_24

    Chapter  Google Scholar 

  25. Zwanenburg, A., et al.: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenoty**. Radiology 295(2), 328–338 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants from Hong Kong Innovation and Technology Commission (Project no. ITS/030/21 & Project no. PRP/041/22FX), and by Foshan HKUST Projects under FSUST21-HKUST10E and FSUST21-HKUST11E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aomeng Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 550 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, W., Li, X., Yu, T., Zhao, D., Shen, J., Cheng, KT. (2023). Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT Volumes. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation