ChiENN: Embracing Molecular Chirality with Graph Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14171))

  • 1031 Accesses

Abstract

Graph Neural Networks (GNNs) play a fundamental role in many deep learning problems, in particular in cheminformatics. However, typical GNNs cannot capture the concept of chirality, which means they do not distinguish between the 3D graph of a chemical compound and its mirror image (enantiomer). The ability to distinguish between enantiomers is important especially in drug discovery because enantiomers can have very distinct biochemical properties. In this paper, we propose a theoretically justified message-passing scheme, which makes GNNs sensitive to the order of node neighbors. We apply that general concept in the context of molecular chirality to construct Chiral Edge Neural Network (ChiENN) layer which can be appended to any GNN model to enable chirality-awareness. Our experiments show that adding ChiENN layers to a GNN outperforms current state-of-the-art methods in chiral-sensitive molecular property prediction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/gmum/ChiENN.

References

  1. Adams, K., Pattanaik, L., Coley, C.W.: Learning 3D representations of molecular chirality with invariance to bond rotations. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. OpenReview.net (2022)

    Google Scholar 

  2. Brown, N., Fiscato, M., Segler, M.H.S., Vaucher, A.C.: GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59(3), 1096–1108 (2019)

    Article  Google Scholar 

  3. Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021)

    Article  Google Scholar 

  4. Choukroun, Y., Wolf, L.: Geometric transformer for end-to-end molecule properties prediction. ar**v preprint ar**v:2110.13721 (2021)

  5. Coors, B., Condurache, A.P., Geiger, A.: Spherenet: learning spherical representations for detection and classification in omnidirectional images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 518–533 (2018)

    Google Scholar 

  6. Ganea, O., et al.: Geomol: torsional geometric generation of molecular 3D conformer ensembles. Adv. Neural. Inf. Process. Syst. 34, 13757–13769 (2021)

    Google Scholar 

  7. Gasteiger, J., Becker, F., Günnemann, S.: Gemnet: universal directional graph neural networks for molecules. Adv. Neural. Inf. Process. Syst. 34, 6790–6802 (2021)

    Google Scholar 

  8. Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. ar**v preprint ar**v:2003.03123 (2020)

  9. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  10. Gómez-Hortigüela, L., Bernardo-Maestro, B.: Chiral organic structure-directing agents. In: Gómez-Hortigüela, L. (ed.) Insights into the Chemistry of Organic Structure-Directing Agents in the Synthesis of Zeolitic Materials. SB, vol. 175, pp. 201–244. Springer, Cham (2017). https://doi.org/10.1007/430_2017_9

    Chapter  Google Scholar 

  11. Hawkins, P.C., Skillman, A.G., Warren, G.L., Ellingson, B.A., Stahl, M.T.: Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J. Chem. Inf. Model. 50(4), 572–584 (2010)

    Article  Google Scholar 

  12. Jamali, F., Mehvar, R., Pasutto, F.: Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J. Pharm. Sci. 78, 695–715 (1989)

    Article  Google Scholar 

  13. Kovatcheva, A., Golbraikh, A., Oloff, S., Feng, J., Zheng, W., Tropsha, A.: QSAR modeling of datasets with enantioselective compounds using chirality sensitive molecular descriptors. SAR QSAR Environ. Res. 16(1–2), 93–102 (2005)

    Article  Google Scholar 

  14. Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., Tossou, P.: Rethinking graph transformers with spectral attention. Adv. Neural. Inf. Process. Syst. 34, 21618–21629 (2021)

    Google Scholar 

  15. Krstulović, A.M.: Chiral Separations by HPLC. Ellis Horwood, Chichester (1989)

    Google Scholar 

  16. Liao, K., et al.: Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds. Nat. Chem. 10, 1048–1055 (2018)

    Article  Google Scholar 

  17. Liu, C., Korablyov, M., Jastrzebski, S., Wlodarczyk-Pruszynski, P., Bengio, Y., Segler, M.H.S.: RetroGNN: fast estimation of synthesizability for virtual screening and de novo design by learning from slow retrosynthesis software. J. Chem. Inf. Model. 62(10), 2293–2300 (2022)

    Article  Google Scholar 

  18. Mamede, R., de Almeida, B.S., Chen, M., Zhang, Q., Aires-de Sousa, J.: Machine learning classification of one-chiral-center organic molecules according to optical rotation. J. Chem. Inf. Model. 61(1), 67–75 (2020)

    Article  Google Scholar 

  19. Mansimov, E., Mahmood, O., Kang, S., Cho, K.: Molecular geometry prediction using a deep generative graph neural network. Sci. Rep. 9(1), 20381 (2019)

    Article  Google Scholar 

  20. Maziarka, L., Danel, T., Mucha, S., Rataj, K., Tabor, J., Jastrzebski, S.: Molecule attention transformer. CoRR abs/2002.08264 (2020)

    Google Scholar 

  21. Maziarka, Ł, Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., Warchoł, M.: Mol-CycleGAN: a generative model for molecular optimization. J. Cheminform. 12(1), 2 (2020)

    Google Scholar 

  22. Maziarz, K., et al.: Learning to extend molecular scaffolds with structural motifs. In: The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. OpenReview.net (2022). https://openreview.net/forum?id=ZTsoE8G3GG

  23. Nguyen, L., He, H., Pham-Huy, C.: Chiral drugs: an overview. Int. J. Biomed. Sci. IJBS 2, 85–100 (2006)

    Article  Google Scholar 

  24. Pattanaik, L., Ganea, O.E., Coley, I., Jensen, K.F., Green, W.H., Coley, C.W.: Message passing networks for molecules with tetrahedral chirality. ar**v preprint ar**v:2012.00094 (2020)

  25. Pfaltz, A., Drury, W.: Design of chiral ligands for asymmetric catalysis: from C2-symmetric P, P- and N, N-ligands to sterically and electronically nonsymmetrical P, N-ligands. Proc. Natl. Acad. Sci. USA 101, 5723–5726 (2004)

    Google Scholar 

  26. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe for a general, powerful, scalable graph transformer. Adv. Neural. Inf. Process. Syst. 35, 14501–14515 (2022)

    Google Scholar 

  27. Schneider, N., Lewis, R.A., Fechner, N., Ertl, P.: Chiral cliffs: investigating the influence of chirality on binding affinity. ChemMedChem 13(13), 1315–1324 (2018)

    Article  Google Scholar 

  28. Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller, K.R.: SchNet-a deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

    Article  Google Scholar 

  29. Subramanian, G., Ramsundar, B., Pande, V., Denny, R.A.: Computational modeling of \(\beta \)-secretase 1 (BACE-1) inhibitors using ligand based approaches. J. Chem. Inf. Model. 56(10), 1936–1949 (2016)

    Article  Google Scholar 

  30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. ar**v preprint ar**v:1710.10903 (2017)

  31. Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)

    Article  Google Scholar 

  32. Wu, Z., et al.: MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9(2), 513–530 (2018)

    Article  Google Scholar 

  33. Xu, M., Luo, S., Bengio, Y., Peng, J., Tang, J.: Learning neural generative dynamics for molecular conformation generation. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021)

    Google Scholar 

  34. Yang, K., et al.: Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59(8), 3370–3388 (2019)

    Article  Google Scholar 

  35. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  36. Zhu, J., et al.: Unified 2D and 3D pre-training of molecular representations. In: Zhang, A., Rangwala, H. (eds.) KDD 2022: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022, pp. 2626–2636. ACM (2022)

    Google Scholar 

Download references

Acknowledgements

The research of J. Tabor was supported by the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund in the POIR.04.04.00-00-14DE/18-00 project carried out within the Team-Net program. The research of P. Gaiński and M. Śmieja was supported by the National Science Centre (Poland), grant no. 2022/45/B/ST6/01117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Gaiński .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

As we consider our work to be fundamental research, there are no direct ethical risks or societal consequences; these have to be analyzed per concrete applications.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaiński, P., Koziarski, M., Tabor, J., Śmieja, M. (2023). ChiENN: Embracing Molecular Chirality with Graph Neural Networks. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation