Understanding Epidemic Multi-wave Patterns via Machine Learning Clustering and the Epidemic Renormalization Group

  • Chapter
  • First Online:
Mathematics of Public Health

Part of the book series: Fields Institute Communications ((FIC,volume 88))

  • 201 Accesses

Abstract

Pandemics are becoming a recurring threat to our global society. Henceforth it is of paramount importance to provide reliable and simple mathematical modelling of their spread to guide decision makers and healthcare stakeholders. We review a novel symmetry-based analysis of epidemiological data, based on ideas adapted from theoretical physics, also known as the epidemiological Renormalization Group (eRG) framework. One major result is the first consistent mathematical modelling of multi-wave patterns, which have been observed in infectious disease spread. Thanks to the plethora of data available for COVID-19, we studied the evolution of variants via an unsupervised machine learning approach of the spike protein genome. With the use of the eRG framework, we confirmed that the emergence of new virus variants is one of the major causes of the onset of a new wave. This result can shape the best strategy to control and tame ongoing and future pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, N.: The Mathematical Theory of Infectious Diseases, 2nd edn. Hafner, New York (1975)

    Google Scholar 

  2. Balabdaoui, F., Mohr, D.: Age-stratified discrete compartment model of the COVID-19 epidemic with application to Switzerland. Sci. Rep. 10, 21306 (2020)

    Google Scholar 

  3. Cacciapaglia, G., Cot, C., de Hoffer, A., Hohenegger, S., Sannino, F., Vatani, S.: Epidemiological theory of virus variants. Physica A Stat. Mech. Appl. 596, 127071 (2022). https://doi.org/10.1016/j.physa.2022.127071

    MathSciNet  Google Scholar 

  4. Cacciapaglia, G., Cot, C., Della Morte, M., Hohenegger, S., Sannino, F., Vatani, S.: The field theoretical ABC of epidemic dynamics (2021)

    Google Scholar 

  5. Cacciapaglia, G., Cot, C., Islind, A.S., Óskarsdóttir, M., Sannino, F.: Impact of us vaccination strategy on COVID-19 wave dynamics. Sci. Rep. 11(1), 1–11 (2021)

    Google Scholar 

  6. Cacciapaglia, G., Cot, C., Islind, A.S., Óskarsdóttir, M., Sannino, F.: Impact of us vaccination strategy on COVID-19 wave dynamics. Sci. Rep. 11, 10960 (2021). https://doi.org/10.1038/s41598-021-90539-2

    Google Scholar 

  7. Cacciapaglia, G., Cot, C., Sannino, F.: Mining google and apple mobility data: Temporal anatomy for COVID-19 social distancing. Sci. Rep. 11, 4150 (2020). https://doi.org/10.1038/s41598-021-83441-4

    Google Scholar 

  8. Cacciapaglia, G., Cot, C., Sannino, F.: Second wave COVID-19 pandemics in europe: A temporal playbook. Sci. Rep. 10, 15514 (2020). https://doi.org/10.1038/s41598-020-72611-5

    Google Scholar 

  9. Cacciapaglia, G., Cot, C., Sannino, F.: Multiwave pandemic dynamics explained: How to tame the next wave of infectious diseases. Sci. Rep. 11, 6638 (2021). https://doi.org/10.1038/s41598-021-85875-2

    Google Scholar 

  10. Cacciapaglia, G., Hohenegger, S., Sannino, F.: Effective mathematical modelling of health passes during a pandemic. Sci. Rep. 12, 6989 (2022)

    Google Scholar 

  11. Cacciapaglia, G., Sannino, F.: Interplay of social distancing and border restrictions for pandemics (COVID-19) via the epidemic Renormalisation Group framework. Sci. Rep. 10, 15828 (2020). https://doi.org/10.1038/s41598-020-72175-4

    Google Scholar 

  12. Cacciapaglia, G., Sannino, F.: Evidence for complex fixed points in pandemic data. Front. Appl. Math. Stat. 7, 659580 (2021). https://doi.org/10.3389/fams.2021.659580

    Google Scholar 

  13. Cardy, J.L., Grassberger, P.: Epidemic models and percolation. J. Phys. A Math. General 18(6), L267–L271 (1985). https://doi.org/10.1088/0305-4470/18/6/001

    MathSciNet  Google Scholar 

  14. Cohen, A.G., Georgi, H.: Walking Beyond the Rainbow. Nucl. Phys. B 314, 7–24 (1989). https://doi.org/10.1016/0550-3213(89)90109-0

    Google Scholar 

  15. de Hoffer, A., Vatani, S., Cot, C., et al.: Variant-driven early warning via unsupervised machine learning analysis of spike protein mutations for COVID-19. Sci. Rep. 12, 9275 (2022)

    Google Scholar 

  16. Della Morte, M., Orlando, D., Sannino, F.: Renormalization Group Approach to Pandemics: The COVID-19 Case. Front. Phys. 8, 144 (2020). https://doi.org/10.3389/fphy.2020.00144

    Google Scholar 

  17. Della Morte, M., Sannino, F.: Renormalization group approach to pandemics as a time-dependent sir model. Front. Phys. 8 (2021). https://doi/org/10.3389/fphy.2020.591876

    Google Scholar 

  18. Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A Math. Gen. 9, 1465 (1976). https://iopscience.iop.org/article/10.1088/0305-4470/9/9/008

    Google Scholar 

  19. Doi, M.: Stochastic theory of diffusion-controlled reaction. J. Phys. A Math. Gen. 9, 1479 (1976). https://doi.org/10.1016/S0378-4371(03)00458-8

    Google Scholar 

  20. Domb, C.: Fluctuation phenomena and stochastic processes. Nature 184, 509–12 (1959). https://doi.org/10.1038/184509a0

    Google Scholar 

  21. Elbe, S., Buckland-Merret, G.: Data, disease and diplomacy: Gisaid’s innovative contribution to global health. Global Chall. 1, 33–46 (2017). https://doi.org/10.1002/gch2.1018

    Google Scholar 

  22. Essam, J.W.: Percolation theory. Rep. Prog. Phys. 43, 833 (1980). https://iopscience.iop.org/article/10.1088/0034-4885/43/7/001/pdf

    MathSciNet  Google Scholar 

  23. Ghostine, R., Gharamti, M.E., Hassrouny, S., Hoteit, I.: An extended seir model with vaccination for forecasting the COVID-19 pandemic in saudi arabia using an ensemble Kalman filter. Mathematics 9, 636 (2021). https://doi.org/10.3390/math9060636

    Google Scholar 

  24. Giordano, G., Colaneri, M., Di Filippo, A., Blanchini, F., Bolzen, F., De Nicolao, G., Sacchi, P., Colaneri, P., Bruno, R.: Modeling vaccination rollouts, sars-cov-2 variants and the requirement for non-pharmaceutical interventions in italy. Nat. Med. (2021). https://doi.org/10.1038/s41591-021-01334-5

  25. Grassberger, P.: On the critical behavior of the general epidemic process and dynamical percolation. Math. Biosci. 63(2), 157–172 (1983). https://doi.org/10.1016/0025-5564(82)90036-0. http://www.sciencedirect.com/science/article/pii/0025556482900360

  26. Hamer, W.: Age-incidence in relation with cycles of disease prevalence. Trans. Epidem. Soc. Lond. 15, 64–77 (1896)

    Google Scholar 

  27. Hamer, W.: Epidemic disease in England: The evidence of variability and of persistency of type; Lecture 1. Lancet, 569–574 (1906)

    Google Scholar 

  28. Hamer, W.: Epidemic disease in England: The evidence of variability and of persistency of type; Lecture 2. Lancet, 655–662 (1906)

    Google Scholar 

  29. Hamer, W.: Epidemic disease in England: The evidence of variability and of persistency of type; Lecture 3. Lancet, 733–739 (1906)

    Google Scholar 

  30. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4) (2000). https://doi.org/10.1137/S0036144500371907

  31. Holdom, B.: Raising condensates beyond the ladder. Phys. Lett. B 213, 365–369 (1988). https://doi.org/10.1016/0370-2693(88)91776-5

    Google Scholar 

  32. Holdom, B.: Continuum limit of quenched theories. Phys. Rev. Lett. 62, 997 (1989). https://doi.org/10.1103/PhysRevLett.62.997

    Google Scholar 

  33. Kermack, W.O., McKendrick, A., Walker, G.T.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118

    Google Scholar 

  34. Konings, F., Perkins, M.D., Kuhn, J.H., Pallen, M.J., Alm, E.J., Archer, B.N., Barakat, A., Bedford, T., Bhiman, J.N., Caly, L., Carter, L.L., Cullinane, A., de Oliveira, T., Druce, J., Masry, I.E., Evans, R., Gao, G.F., Gorbalenya, A.E., Hamblion, E., Herring, B.L., Hodcroft, E., Holmes, E.C., Kakkar, M., Khare, S., Koopmans, M.P.G., Korber, B., Leite, J., MacCannell, D., Marklewitz, M., Maurer-Stroh, S., Rico, J.A.M., Munster, V.J., Neher, R., Munnink, B.O., Pavlin, B.I., Peiris, M., Poon, L., Pybus, O., Rambaut, A., Resende, P., Subissi, L., Thiel, V., Tong, S., van der Werf, S., von Gottberg, A., Ziebuhr, J., Kerkhove, M.D.V.: Sars-cov-2 variants of interest and concern naming scheme conducive for global discourse. Nat. Microbiol. 6, 821–823 (2021). https://doi.org/10.1038/s41564-021-00932-w

  35. Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, K.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M., de Silva, T.I., Angyal, A., Brown, R.L., Carrilero, L., Green, L.R., Groves, D.C., Johnson, K.J., Keeley, A.J., Lindsey, B.B., Parsons, P.J., Raza, M., Rowland-Jones, S., Smith, N., Tucker, R.M., Wang, D., Wyles, M.D., McDanal, C., Perez, L.G., Tang, H., Moon-Walker, A., Whelan, S.P., LaBranche, C.C., Saphire, E.O., Montefiori, D.C.: Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the COVID-19 virus. Cell 182(4), 812–827.e19 (2020). https://doi.org/10.1016/j.cell.2020.06.043

  36. Latif, A.A., Mullen, J.L., Alkuzweny, M., Tsueng, G., Cano, M., Haag, E., Zhou, J., Zeller, M., Hufbauer, E., Matteson, N., Wu, C., Andersen, K.G., Su, A.I., Gangavarapu, K., Hughes, L.D., the Center for Viral Systems Biology: AY.4.2 Lineage Report. outbreak.info (2021). https://outbreak.info/situation-reports?pango=AY.4.2

  37. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk 163, 845–848 (1965)

    MathSciNet  Google Scholar 

  38. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Cybern. Control Theory 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  39. Mahase, E.: Covid-19: What have we learnt about the new variant in the uk? BMJ 371 (2020). https://doi.org/10.1136/bmj.m4944

  40. McKendrick, A.: The rise and fall of epidemics. Paludism (Trans. Committee Study Malaria India) 1, 54–66 (1912)

    Google Scholar 

  41. McKendrick, A.: Studies on the theory of continuous probabilities, with special reference to its bearing on natural phenomena of a progressive nature. Proc. Lond. Math. Soc. 13, 401–416 (1914)

    MathSciNet  Google Scholar 

  42. McKendrick, A.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)

    Google Scholar 

  43. Meng, X., Cai, Z., Dui, H., Cao, H.: Vaccination strategy analysis with SIRV epidemic model based on scale-free networks with tunable clustering. IOP Confer. Ser. Mater. Sci. Eng. 1043(3), 032012 (2021). https://doi.org/10.1088/1757-899x/1043/3/032012

    Google Scholar 

  44. Pater, A.A., Bosmeny, M.S., Barkau, C.L., Ovington, K.N., Chilamkurthy, R., Parasrampuria, M., Eddington, S.B., Yinusa, A.O., White, A.A., Metz, P.E., Sylvain, R.J., Hebert, M.M., Benzinger, S.W., Sinha, K., Gagnon, K.T.: Emergence and evolution of a prevalent new sars-cov-2 variant in the united states. bioRxiv (2021). https://doi.org/10.1101/2021.01.11.426287

  45. Peliti, L.: Path integral approach to birth-death processes on a lattice. J. Phys. France (Paris) 46, 1469–1483 (1985). https://doi.org/10.1051/jphys:019850046090146900

    Google Scholar 

  46. Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017). https://doi.org/10.1016/j.physrep.2017.05.004

    MathSciNet  Google Scholar 

  47. Plante, J.A., Liu, Y., Liu, J., **a, H., Johnson, B.A., Lokugamage, K.G., Zhang, X., Muruato, A.E., Zou, J., Fontes-Garfias, C.R., Mirchandari, D., Scharton, D., Bilello, J.P., Ku, Z., An, Z., Kalveram, B., Freiberg, A.N., Menachery, V.D., **e, X., Plante, K.S., Weaver, S.C., Shi, P.Y.: Spike mutation d614g alters sars-cov-2 fitness. Nature 592, 116–121 (2021). https://doi.org/10.1038/s41586-020-2895-3

    Google Scholar 

  48. Plumptre, A.J., Baisero, D., Belote, R.T., Vázquez-Domínguez, E., Faurby, S., Jedrzejewski, W., Kiara, H., Kühl, H., Benítez-López, A., Luna-Aranguré, C., Voigt, M., Wich, S., Wint, W., Gallego-Zamorano, J., Boyd, C.: Where might we find ecologically intact communities? Front. Forests Glob. Change 4 (2021). https://doi.org/10.3389/ffgc.2021.626635. https://www.frontiersin.org/articles/10.3389/ffgc.2021.626635

  49. Priesemann, V., Brinkmann, M.M., Ciesek, S., Cuschieri, S., Czypionka, T., Giordano, G., Gurdasani, D., Hanson, C., Hens, N., Iftekhar, E., Kelly-Irving, M., Klimek, P., Kretzschmar, M., Peichl, A., Perc, M., Sannino, F., Schernhammer, E., Schmidt, A., Staines, A., Szczurek, E.: Calling for pan-European commitment for rapid and sustained reduction in SARS-COV-2 infections. Lancet 397(10269), 92–93 (2021)

    Google Scholar 

  50. Rambaud, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock, T., Robertson, D.L., Volz, E.: Preliminary genomic characterisation of an emergent sars-cov-2 lineage in the uk defined by a novel set of spike mutations. COVID-19 Genomics Consortium UK (CoG-UK) Report (2020). https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-SARS-COV-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563

  51. Rambaut, A., Holmes, E.C., O’Toole, Á., Hill, V., McCrone, J.T., Ruis, C., du Plessis, L., Pybus, O.G.: A dynamic nomenclature proposal for sars-cov-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020). https://doi.org/10.1038/s41564-020-0770-5

    Google Scholar 

  52. Rasigade, J.P., Barray, A., Shapiro, J.T., Coquisart, C., Vigouroux, Y., Bal, A., Destras, G., Vanhems, P., Lina, B., Josset, L., Wirth, T.: A viral perspective on worldwide non-pharmaceutical interventions against COVID-19. medRxiv (2020). https://doi.org/10.1101/2020.08.24.20180927

  53. Reed, K.: Viral Zoonoses. Reference Module in Biomedical Sciences, pp. B978–0–12–801238–3.95729–5 (2018)

    Google Scholar 

  54. Ross, R.: The Prevention of Malaria, 2nd edn. John Murray, London (1911)

    Google Scholar 

  55. Ross, R.: An application of the theory of probabilities to the study of a priori pathometry: Part I. Proc. Roy. Soc. Lond. A 92, 204–230 (1916)

    Google Scholar 

  56. Ross, R., Hudson, H.: An application of the theory of probabilities to the study of a priori pathometry: Part II. Proc. Roy. Soc. Lond. A 93, 212–225 (1916)

    Google Scholar 

  57. Ross, R., Hudson, H.: An application of the theory of probabilities to the study of a priori pathometry: Part III. Proc. Roy. Soc. Lond. A 93, 225–240 (1916)

    Google Scholar 

  58. Sabino, E.C., Buss, L.F., Carvalho, M.P., Prete Jr., C.A., Crispim, M.A., Fraiji, N.A., Pereira, R.H., Parag, K.V., da Silva Peixoto, P., Kraemer, M.U., Oikawa, M.K., Salomon, T., Cucunuba, Z.M., Castro, M.C., Aruska de Souza Santos, A., Nascimento, V.H., Pereira, H.S., Ferguson, N.M., Pybus, O.G., Kucharski, A., Busch, M.P., Dye, C., Faria, N.R.: Resurgence of COVID-19 in manaus, brazil, despite high seroprevalence. Lancet 397, 452–455 (2021). https://doi.org/10.1016/S0140-6736(21)00183-5

    Google Scholar 

  59. Sanjuán, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R.: Viral mutation rates. J. Virol. 84(19), 9733–9748 (2010). https://doi.org/10.1128/JVI.00694-10

    Google Scholar 

  60. Shu, Y., McCauley, J.: Gisaid: Global initiative on sharing all influenza data – from vision to reality. EuroSurveillance 22 (13) (2017). https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

  61. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979)

    Google Scholar 

  62. Taubenberger, J.K., Morens, D.M.: 1918 influenza: The mother of all pandemics. Rev. Biomed. 17(1), 69–79 (2006)

    Google Scholar 

  63. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A.J., Engelbrecht, S., Van Zyl, G., Preiser, W., Petruccione, F., Sigal, A., Hardie, D., Marais, G., Hsiao, M., Korsman, S., Davies, M.A., Tyers, L., Mudau, I., York, D., Maslo, C., Goedhals, D., Abrahams, S., Laguda-Akingba, O., Alisoltani-Dehkordi, A., Godzik, A., Wibmer, C.K., Sewell, B.T., Lourenço, J., Alcantara, L.C.J., Pond, S.L.K., Weaver, S., Martin, D., Lessells, R.J., Bhiman, J.N., Williamson, C., de Oliveira, T.: Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (sars-cov-2) lineage with multiple spike mutations in South Africa. medRxiv (2020). https://doi.org/10.1101/2020.12.21.20248640

  64. Volz, E., Mishra, S., Chand, M., Barrett, J.C., Johnson, R., Geidelberg, L., Hinsley, W.R., Laydon, D.J., Dabrera, G., O’Toole, Á., Amato, R., Ragonnet-Cronin, M., Harrison, I., Jackson, B., Ariani, C.V., Boyd, O., Loman, N.J., McCrone, J.T., Gonçalves, S., Jorgensen, D., Myers, R., Hill, V., Jackson, D.K., Gaythorpe, K., Groves, N., Sillitoe, J., Kwiatkowski, D.P., Flaxman, S., Ratmann, O., Bhatt, S., Hopkins, S., Gandy, A., Rambaut, A., Ferguson, N.M.: Transmission of sars-cov-2 lineage b.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv (2021). https://doi.org/10.1101/2020.12.30.20249034

  65. Wang, Z., Andrews, M.A., Wu, Z.X., Wang, L., Bauch, C.T.: Coupled disease–behavior dynamics on complex networks: A review. Phys. Life Rev. 15, 1 – 29 (2015). https://doi.org/10.1016/j.plrev.2015.07.006

    Google Scholar 

  66. Wang, Z., Bauch, C.T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathé, M., Zhao, D.: Statistical physics of vaccination. Phys. Rep. 664, 1 – 113 (2016). https://doi.org/10.1016/j.physrep.2016.10.006. http://www.sciencedirect.com/science/article/pii/S0370157316303349

  67. Who “tracking sars-cov-2 variants” page. https://www.who.int/en/activities/tracking-SARS-COV-2-variants/

  68. Wilson, K.G.: Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971). https://doi.org/10.1103/PhysRevB.4.3174

    Google Scholar 

  69. Wilson, K.G.: Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior. Phys. Rev. B 4, 3184–3205 (1971). https://doi.org/10.1103/PhysRevB.4.3184

    Google Scholar 

  70. Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., **a, Z., Tan, W., Cheng, G., Jiang, T.: Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 27(3), 325–328 (2020). https://doi.org/10.1016/j.chom.2020.02.001

    Google Scholar 

Download references

Acknowledgements

We thank the members of the team that allowed us to obtain all the novel results summarized in this chapter. They comprise theoretical physicists F. Sannino, S. Hohenegger, M. della Morte, and C. Cot; experimental particle physicists F. Conventi, F. Cirotto, and A. Giannini; computer and data scientists M. Óskarsdóttir, A.S. Islind, and A. de Hoffer; and biologists M.L. Chiusano and A. Cimarelli.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vatani, S., Cacciapaglia, G. (2023). Understanding Epidemic Multi-wave Patterns via Machine Learning Clustering and the Epidemic Renormalization Group. In: David, J., Wu, J. (eds) Mathematics of Public Health. Fields Institute Communications, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-031-40805-2_3

Download citation

Publish with us

Policies and ethics

Navigation