Assembling Uncertainty Effects on the Dynamic Response of Nominally Identical Motorbike Components

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3 (SEM 2023)

Abstract

The chassis and swingarm are the main components of the motorbike frame. The dynamic response of these components strongly influences the frame flexibility and consequently the motorbike dynamics. However, there may be variability in nominally identical manufactured components. The uncertainty may arise from many sources including geometric tolerances, material properties, and variability in the manufacturing and assembling process, for example, adhesive bonding of hollow parts. The presence of uncertainties can significantly alter motorbike component dynamic response and modal properties, and thus their overall performance during a racing competition. Therefore, competitive riders test several components during the racing weekend to find the specific motorbike frame with which they are more comfortable.

In this chapter, experimental modal analyses have been carried out on the flexible components of a motorbike frame. The experimental campaign results have demonstrated significative differences in frequency response functions, natural frequencies and dam** of motorbike components. Modal assurance criterion and other indexes have been used to compare mode shapes of the seemingly identical components and to assess possible crossing and veering phenomena, due to uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 29 March 2024

    A correction has been published.

References

  1. Sharp, R.S., Limebeer, D.J.: A motorcycle model for stability and control analysis. Multibody Sys. Dyn. 6, 123–142 (2001). https://doi.org/10.1023/A:1017508214101

    Article  Google Scholar 

  2. Cossalter, V.: Motorcycle Dynamics. Lulu, Morrisville (2006)

    Google Scholar 

  3. Doria, A., Taraborrelli, L., Urbani, M.: A modal approach for the study of the transient behavior of motorcycle and scooter tires. In: Proceedings of ASME International Design Engineering Technical Conferences, August 17–20, 2014, Buffalo, USA, pp. 29–37 (2014). https://doi.org/10.1115/DETC2014-34023

  4. Rovarino, D., Actis Comino, L., Bonisoli, E., Rosso, C., Venturini, S., Velardocchia, M., Baecker, M., Gallrein, A.: A methodology for automotive steel wheel life assessment. In: SAE 2020 World Congress, April 21–23, 2020, Detroit, Michigan, SAE Technical Paper 2020-01-1240, pp. 1–10 (2020). https://doi.org/10.4271/2020-01-1240

  5. Cossalter, V., Lot, R.: A motorcycle multi-body model for real time simulations based on the natural coordinates approach. Veh. Syst. Dyn. 37(6), 423–447 (2002). https://doi.org/10.1076/vesd.37.6.423.3523

    Article  Google Scholar 

  6. Sharp, R.S., Evangelou, S., Limebeer, D.J.: Advances in the modelling of motorcycle dynamics. Multibody Sys. Dyn. 12, 251–283 (2004). https://doi.org/10.1023/B:MUBO.0000049195.60868.a2

    Article  Google Scholar 

  7. Sequenzia, G., Oliveri, S., Fatuzzo, G., Calì, M.: An advanced multibody model for evaluating rider’s influence on motorcycle dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(2), 193–207 (2015). https://doi.org/10.1177/1464419314557686

    Article  Google Scholar 

  8. Barbagallo, R., Sequenzia, G., Oliveri, S., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(2), 207–221 (2016). https://doi.org/10.1177/1464419315602825

    Article  Google Scholar 

  9. Olivieri, S.M., Calì, M., Catalano, L.: Dynamics of motorcycle using flexible elements. In: Proceedings of International Design Conference, Dubrovnik, Croatia, 2002, pp. 1227–1236 (2002)

    Google Scholar 

  10. Cossalter, V., Doria, A., Massaro, M., Taraborrelli, L.: Experimental and numerical investigation on the motorcycle front frame flexibility and its effect on stability. Mech. Syst. Signal Process. 60, 452–471 (2015). https://doi.org/10.1016/j.ymssp.2015.02.011

    Article  Google Scholar 

  11. Dixit, V.S., Nukulwar, M.R., Shinde, S.T., Pimpale, S.S.: Vibration response and optimization of swing arm through hardening. Int. J. Curr. Eng. Technol. 6, 562–567 (2016)

    Google Scholar 

  12. Lake, K., Thomas, R., Williams, O.: The influence of compliant chassis components on motorcycle dynamics: an historical overview and the potential future impact of carbon fibre. Int. J. Veh. Mech. Mobil. 50(7), 1043–1052 (2012). https://doi.org/10.1080/00423114.2011.647824

    Article  Google Scholar 

  13. Bocciolone, M., Cheli, F., Pezzola, M., Viganò, R.: Static and dynamic properties of a motorcycle frame: experimental and numerical approach. WIT Trans. Model. Simul. 41, 517–526 (2005)

    Google Scholar 

  14. Maia, N.M.M., Silva, J.M.M.: Theoretical and Experimental Modal Analysis. Wiley, New York (1997)

    Google Scholar 

  15. Harshal, B.B.: Study of experimental modal analysis on two wheeler frame. Int. J. Eng. Sci. Res. Technol. 4(7), 2518–2520 (2015)

    Google Scholar 

  16. Hiremath, S., Kumar, N., Nagareddy, G., Rathod, L.: Modal analysis of two wheeler chassis. Int. J. Eng. Sci. Res. Technol. 5(7), 68–73 (2016)

    Google Scholar 

  17. Bonisoli, E., Lisitano, D., Dimauro, L.: Experimental and numerical mode shape tracing from components to whole motorbike chassis. In: Proceedings of the 28th International Conference on Noise and Vibration Engineering ISMA2018, September 17–19, 2018, Leuven, Belgium, pp. 3597–3604 (2018)

    Google Scholar 

  18. Bonisoli, E., Lisitano, D., Dimauro, L., Peroni, L.: Chapter 14: A proposal of dynamic behaviour design based on mode shape tracing: numerical application to a motorbike frame. In: Dynamic Substructures Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 4, 186 pp, pp. 149–158. Springer (2020). https://doi.org/10.1007/978-3-030-12184-6_14

    Chapter  Google Scholar 

  19. Bonisoli, E., Marcuccio, G., Rosso, C.: Chapter 18: Crossing and veering phenomena in crank mechanism dynamics. In: Topics in Model Validation and Uncertainty Quantification Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series 2013, vol. 5, 264 pp, pp. 175–187. Springer (2013). https://doi.org/10.1007/978-1-4614-6564-5_18

    Chapter  Google Scholar 

  20. Bonisoli, E., Marcuccio, G., Venturini, S.: Interference fit estimation through stress-stiffening effect on dynamics. Mech. Syst. Signal Process. 160, 107919–107942 (2021). https://doi.org/10.1016/j.ymssp.2021.107919

    Article  Google Scholar 

  21. Bonisoli, E., Lisitano, D., Dimauro, L.: Detection of critical mode-shapes in flexible multibody systems dynamics: the case study of a racing motorcycle. Mech. Syst. Signal Process. 180, 1–23, 109370 (2022). https://doi.org/10.1016/j.ymssp.2022.109370

    Article  Google Scholar 

  22. Bonisoli, E., Vella, A.D., Venturini, S.: Chapter 13: Uncertainty effects on bike spoke wheel modal behaviour. In: Model Validation and Uncertainty Quantification Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 3, 150 pp, pp. 111–123. Springer (2023). https://doi.org/10.1007/978-3-031-04090-0_13

    Chapter  Google Scholar 

  23. Mottershead, J.E., Mares, C., Friswell, M.I., James, S.: Selection and updating of parameters for an aluminum space-frame model. Mech. Syst. Signal Process. 14(6), 923–944 (2000). https://doi.org/10.1006/mssp.2000.1303

    Article  Google Scholar 

  24. Kyprianou, A., Mottershead, J.E.: Uncertain systems: modelling and updating. In: Proceedings of the 18th International Congress on Sound and Vibration (ICSV 2011), July 10–14, 2011, Rio de Janeiro, Brazil, pp. 995–1002 (2011)

    Google Scholar 

  25. Banhart, J.: Manufacturing routes for metallic foams. J. Miner. Met. Mater. Soc. 52(12), 22–27 (2000). https://doi.org/10.1007/s11837-000-0062-8

    Article  Google Scholar 

  26. Bonisoli, E., Delprete, C., Rosso, C.: Proposal of a modal-geometrical-based master nodes selection criterion in modal analysis. Mech. Syst. Signal Process. 23(3), 606–620 (2009). https://doi.org/10.1016/j.ymssp.2008.05.012

    Article  Google Scholar 

  27. Ibrahim, S.R.: Existence and normalization of complex modes for post experimental use in modal analysis. In: Modal Analysis and Testing NATO Science Series (Series E: Applied Sciences), vol. 363, pp. 441–452. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-011-4503-9_21

    Chapter  Google Scholar 

  28. Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock. Vib. 11, 395–409 (2004). https://doi.org/10.1155/2004/523692

    Article  Google Scholar 

  29. Vacher, P., Jacquier, B., Bucharles, A.: Extensions of the MAC criterion to complex modes. In: Proceedings of the 24th International Conference on Noise and Vibration Engineering ISMA2010, September 20–22, 2010, Leuven, Belgium, pp. 2713–2725 (2010)

    Google Scholar 

  30. Pappa, R.S., Elliott, K.B., Schenk, A.: Consistent-mode indicator for the eigensystem realization algorithm. J. Guid. Control. Dyn. 16(5), 852–858 (1993). https://doi.org/10.2514/3.21092

    Article  Google Scholar 

  31. Bonisoli, E., Dimauro, L., Venturini, S., Lupos: Open-source scientific computing in structural dynamics. Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, Austin, TX, USA, pp. 13–16 (2023). https://doi.org/10.1007/978-3-031-34946-1_23

Download references

Acknowledgements

The authors would like to thank Prof. Lorenzo Peroni, supervisor of Politecnico di Torino Racing Team called 2WheelsPoliTO, for the material and the constant support provided as well as for the opportunity to involve the authors in interesting works regarding motorcycle dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Venturini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonisoli, E., Dimauro, L., Venturini, S., Peroni, L. (2024). Assembling Uncertainty Effects on the Dynamic Response of Nominally Identical Motorbike Components. In: Platz, R., Flynn, G., Neal, K., Ouellette, S. (eds) Model Validation and Uncertainty Quantification, Volume 3. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-37003-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37003-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37002-1

  • Online ISBN: 978-3-031-37003-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation