Swarm Multi-agent Trap** Multi-target Control with Obstacle Avoidance

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13969))

Included in the following conference series:

  • 579 Accesses

Abstract

In this paper, we investigate that swarm multi-agent can trap multi-target and avoid obstacles simultaneously through cooperative control. First, the control method proposed in this paper allows the number of multi-agent to trap each target evenly, without all or more than half of the number of agents trap** one of the targets. Second, a uniform number of agents track the target based on information about the target and local interactions with other agents. Introducing a repulsive potential function between the agent and the target can enclose the target. In addition, the control method designed in this paper can trap the target faster. Finally, agents trap** the same target converge their velocity to achieve the capture of the target after forming an enclosing state. In achieving this process, agents can simultaneously avoid obstacles well. The simulation results show the feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gómez-Nava, L., Bon, R., Peruani, F.: Intermittent collective motion in sheep results from alternating the role of leader and follower. Nat. Phys. 18, 1494–1501 (2022)

    Article  Google Scholar 

  2. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. NCS, pp. 43–85. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6_2

  3. Tian, Y., Liu, K.: Search and rescue under the forest canopy using multiple UAVs. Int. J Robot. Res. 39, 1201–1221 (2020)

    Article  Google Scholar 

  4. Wen, G., Duan, Z., Li, Z.: Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. Int. J. Robust Nonlinear Control 22(16), 1790–1805 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  6. Reynolds, C.: Flocks, herds and schools: a distributed behavior model. In: Proceedings of the SIGGRAPH 1987, p. 25 (1987)

    Google Scholar 

  7. Vicsek, T., Cziroók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  8. Jadbabaie, A., Jie, L., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Z., Hu, W., Chen, L.: A specified-time multi-agent hunting scheme with fairness consideration. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 1775–1780 (2009)

    Google Scholar 

  11. Stouch, D.W., Zeidman, E., Callahan, W., et al.: Dynamic replanning on demand of UAS constellations performing ISR missions. In: SPIE Defense, Security, and Sensing, pp. 238–243. International Society for Optics and Photonics (2011)

    Google Scholar 

  12. Lope, J.D., Maravall, D., Quiñonez, Y.: Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems. Robot. Auton. Systems 61(7), 714–720 (2013)

    Article  Google Scholar 

  13. Barnes, L.E., Fields, M.A., Valavanis, K.P.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. Syst. Man Cybern. 39(6), 1434–1445 (2009)

    Article  Google Scholar 

  14. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Ind. Electron. 61(1), 347–354 (2014)

    Article  Google Scholar 

  15. Xu, G., Zhao, Y., Liu, H.: Pursuit and evasion game between UVAs based on multi-agent reinforcement learning. In: 2019 Chinese Automation Congress (CAC), pp. 1261–1266. IEEE(2019)

    Google Scholar 

  16. Mnih, V., Kavukcuoglu, K., Silver, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  17. Luo, X.Y., Li, S.B., Guan, X.P.: Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recogn. Lett. 31(9), 800–805 (2010)

    Article  Google Scholar 

  18. Zhang, S., Liu, M., Lei, X.: Multi-target trap** with swarm robots based on pattern formation. Robot. Auton. Syst. 106, 1–13 (2018)

    Article  Google Scholar 

  19. Karaman, S., Frazzoli, E.: Sampling-Based Algorithms for Optimal Motion Planning. Sage Publications, Inc. (2011)

    Google Scholar 

  20. Sathyaraj, B.M., Jain, L.C.: Multiple UAVs path planning algorithms: a comparative study. Fuzzy Optim. Decis. Mak. 7(3), 257–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 21(3), 354–363 (2005)

    Article  Google Scholar 

  22. Zhu, B., **e, L., Han, D., Meng, X., Teo, R.: A survey on recent progress in control of swarm systems. Sci. China Inf. Sci. 60(7), 1–24 (2017). https://doi.org/10.1007/s11432-016-9088-2

    Article  MathSciNet  Google Scholar 

  23. Pei, H., Chen, S., Lai, Q.: A local flocking algorithm of multi-agent dynamic systems. Int. J. Control 88(11), 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, Y., Kong, Z., Ding, L.: Flocking of multi-agent system with nonlinear dynamics via distributed event-triggered control. Appl. Sci. 9(7), 1336 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research reported herein was supported by the NSFC of China under Grant No. 71571091 and 71771112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueBo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Jiang, G., Yang, Y., Chen, X. (2023). Swarm Multi-agent Trap** Multi-target Control with Obstacle Avoidance. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36625-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36624-6

  • Online ISBN: 978-3-031-36625-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation