Future Directions for RDF2vec

  • Chapter
  • First Online:
Embedding Knowledge Graphs with RDF2vec

Abstract

In this chapter, we highlight a few shortcomings of RDF2vec, and we discuss possible future ways to mitigate those. Among the most prominent ones, there are the handling of literal values (which are currently not used by RDF2vec), the handling of dynamic knowledge graphs, and the generation of are explanations for systems using RDF2vec (which are currently black box models).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such an approach would, however, not allow for similarity search in the vector space directly, but instead require some preprocessing of the concatenated vectors, as discussed in Sect. 7.1.

  2. 2.

    Wikidata is not included here, since it does not use OWL for modeling its ontology. The information on Cyc is based on the openly available OWL translation of CyC. Other OWL constructs, such as existential and universal quantifiers, cardinality constraints, and property chains, were not observed in any of the considered knowledge graphs.

  3. 3.

    https://w3c.github.io/rdf-star/implementations.html.

References

  • Abuoda G, Dell’Aglio D, Keen A, Hose K (2022) Transforming rdf-star to property graphs: a preliminary analysis of transformation approaches. In: 6th workshop on storing, querying and benchmarking knowledge graphs

    Google Scholar 

  • Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6:52138–52160

    Article  Google Scholar 

  • Aitchison J (2012) Words in the mind: an introduction to the mental lexicon. Wiley

    Google Scholar 

  • Angles R (2018) The property graph database model. In: AMW

    Google Scholar 

  • Banerjee A, Dalal R, Mittal S, Joshi KP (2017) Generating digital twin models using knowledge graphs for industrial production lines. UMBC information systems department

    Google Scholar 

  • Bastani O, Kim C, Bastani H (2017) Interpretability via model extraction. ar**v:1706.09773

  • Bloem P, Wilcke X, Berkel Lv, Boer Vd (2021) kgbench: a collection of knowledge graph datasets for evaluating relational and multimodal machine learning. In: European semantic web conference. Springer, pp 614–630

    Google Scholar 

  • Chen J, Hu P, Jimenez-Ruiz E, Holter OM, Antonyrajah D, Horrocks I (2021) Owl2vec*: embedding of owl ontologies. Mach Learn 110(7):1813–1845

    Article  MathSciNet  MATH  Google Scholar 

  • Daruna A, Gupta M, Sridharan M, Chernova S (2021) Continual learning of knowledge graph embeddings. IEEE Robot Autom Lett 6(2):1128–1135

    Article  Google Scholar 

  • Ding B, Wang Q, Wang B, Guo L (2018) Improving knowledge graph embedding using simple constraints. ar**v:1805.02408

  • Došilović FK, Brčić M, Hlupić N (2018) Explainable artificial intelligence: a survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), IEEE, pp 0210–0215

    Google Scholar 

  • García-Durán A, Dumančić S, Niepert M (2018) Learning sequence encoders for temporal knowledge graph completion. In: EMNLP

    Google Scholar 

  • Gayo JEL, Prud’Hommeaux E, Boneva I, Kontokostas D (2017) Validating rdf data. Synth Lect Semant Web: Theory Technol 7(1):1–328

    Google Scholar 

  • Gesese GA, Biswas R, Alam M, Sack H (2021) A survey on knowledge graph embeddings with literals: which model links better literally? Semant Web 12(4):617–647. https://dx.doi.org/10.3233/SW-200404

  • Hartig O (2017) Foundations of rdf* and sparql*: (an alternative approach to statement-level metadata in rdf). In: AMW 2017 11th Alberto Mendelzon international workshop on foundations of data management and the web, Montevideo, Uruguay, June 7–9, 2017. Juan Reutter, Divesh Srivastava, vol 1912

    Google Scholar 

  • Huan C, Song SL, Pandey S, Liu H, Liu Y, Lepers B, He C, Chen K, Jiang J, Wu Y (2023) Tea: a general-purpose temporal graph random walk engine. In: EuroSys

    Google Scholar 

  • Krause F (2022) Dynamic knowledge graph embeddings via local embedding reconstructions. In: European semantic web conference. Springer, pp 215–223

    Google Scholar 

  • Krause F, Weller T, Paulheim H (2022) On a generalized framework for time-aware knowledge graphs. In: Towards a knowledge-aware AI: SEMANTiCS 2022-proceedings of the 18th international conference on semantic systems, 13–15 September 2022, Vienna, Austria, IOS Press, vol 55, p 69

    Google Scholar 

  • Lecue F (2020) On the role of knowledge graphs in explainable ai. Semant Web 11(1):41–51

    Article  Google Scholar 

  • Lehmann J (2009) Dl-learner: learning concepts in description logics. J Mach Learn Res 10:2639–2642

    MathSciNet  MATH  Google Scholar 

  • Le-Phuoc D, Quoc HNM, Quoc HN, Nhat TT, Hauswirth M (2016) The graph of things: a step towards the live knowledge graph of connected things. J Web Semant 37:25–35

    Article  Google Scholar 

  • Martin T, Valtchev P, Diallo AB (2020) Leveraging a domain ontology in (neural) learning from heterogeneous data. In: CIKM (Workshops)

    Google Scholar 

  • Meilicke C, Chekol MW, Ruffinelli D, Stuckenschmidt H (2019) An introduction to anyburl. In: Joint German/Austrian conference on artificial intelligence (Künstliche Intelligenz), Springer, pp 244–248

    Google Scholar 

  • Orlandi F, Graux D, O’Sullivan D (2021) Benchmarking rdf metadata representations: reification, singleton property and rdf. In: 2021 IEEE 15th international conference on semantic computing (ICSC), IEEE, pp 233–240

    Google Scholar 

  • Paulheim H, Gangemi A (2015) Serving dbpedia with dolce–more than just adding a cherry on top. In: International semantic web conference. Springer, pp 180–196

    Google Scholar 

  • Řehůřek R, Sojka P (2010) Software framework for Topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50. http://is.muni.cz/publication/884893/en

  • Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144

    Google Scholar 

  • Ristoski P, Paulheim H (2016) Rdf2vec: Rdf graph embeddings for data mining. In: International semantic web conference. Springer, pp 498–514

    Google Scholar 

  • Ristoski P, Rosati J, Di Noia T, De Leone R, Paulheim H (2019) Rdf2vec: Rdf graph embeddings and their applications. Semant Web 10(4):721–752

    Article  Google Scholar 

  • Rossi A, Firmani D, Merialdo P, Teofili T (2022) Explaining link prediction systems based on knowledge graph embeddings. In: Proceedings of the 2022 international conference on management of data, pp 2062–2075

    Google Scholar 

  • Santos H, Dantas V, Furtado V, Pinheiro P, McGuinness DL (2017) From data to city indicators: a knowledge graph for supporting automatic generation of dashboards. In: European semantic web conference. Springer, pp 94–108

    Google Scholar 

  • Schlichtkrull M, Kipf TN, Bloem P, Berg Rvd, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: European semantic web conference. Springer, pp 593–607

    Google Scholar 

  • Schreiber AT, Raimond Y (2014) Rdf 1.1 primer

    Google Scholar 

  • Tay Y, Luu AT, Hui SC (2017) Non-parametric estimation of multiple embeddings for link prediction on dynamic knowledge graphs. In: Thirty-first AAAI conference on artificial intelligence

    Google Scholar 

  • Tian L, Wen X, Song Z et al (2021) An online word vector generation method based on incremental huffman tree merging. Tehnički vjesnik 28(1):52–57

    Google Scholar 

  • Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

    Article  Google Scholar 

  • Wilcke W, Bloem P, de Boer V, van t Veer R, van Harmelen F (2020) End-to-end entity classification on multimodal knowledge graphs. ar**v:2003.12383

  • Wu T, Khan A, Yong M, Qi G, Wang M (2022) Efficiently embedding dynamic knowledge graphs. Knowled-Based Syst 109124

    Google Scholar 

  • Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J (2019) Explainable ai: a brief survey on history, research areas, approaches and challenges. In: CCF international conference on natural language processing and Chinese computing. Springer, pp 563–574

    Google Scholar 

  • Zhang W, Chen J, Li J, Xu Z, Pan JZ, Chen H (2022) Knowledge graph reasoning with logics and embeddings: survey and perspective. ar**v:2202.07412

  • Zhu M, Ye X, **ang T, Ma Y, Chen X (2018) Runtime knowledge graph based approach to smart home application development. In: 2018 IEEE international congress on internet of things (ICIOT), IEEE, pp 110–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Paulheim .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulheim, H., Ristoski, P., Portisch, J. (2023). Future Directions for RDF2vec. In: Embedding Knowledge Graphs with RDF2vec. Synthesis Lectures on Data, Semantics, and Knowledge. Springer, Cham. https://doi.org/10.1007/978-3-031-30387-6_8

Download citation

Publish with us

Policies and ethics

Navigation