Sorting of Live/dead Escherichia Coli by Means of Dielectrophoresis for Rapid Antimicrobial Susceptibility Testing

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1036))

  • 442 Accesses

Abstract

According to the World Health Organization (WHO) forecasts, AntiMicrobial Resistance (AMR) will represent the leading cause of death worldwide in the next decades. To prevent this phenomenon, rapid antimicrobial susceptibility testing is needed to guide the choice of the proper antibiotic. In this context, we propose a chip-scale system, mainly based on a microfluidic channel combined with a pattern of engineered electrodes, to efficiently test an antibiotic on a bacteria sample. The use of dielectrophoretic (DEP) forces enable the sorting of live/dead bacteria, such as Escherichia Coli, with an efficiency larger than 99% for rapid monitoring of the antimicrobial susceptibility at the single-bacterium level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunetti, G., Conteduca, D., Armenise, M.N., Ciminelli, C.: Novel micro-nano optoelectronic biosensor for label-free real-time biofilm monitoring. Biosensors 11(10), 361 (2021)

    Google Scholar 

  2. Stewart, P.S., Costerton, J.W.: Antibiotic resistance of bacteria in biofilm. Lancet 358, 135–138 (2001)

    Google Scholar 

  3. Andersson, D.I., Hughes, D.: Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010)

    Google Scholar 

  4. Chang, H.H., Cohe, T., Grad, Y.H., Hanage, W.P., O’Brien, T.F., Lipsitch, M.: Origin and proligeration of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev. 79, 101–116 (2015)

    Google Scholar 

  5. “World Health Statistics 2020, World Health Organization: Geneva, Switzerland, (2020)

    Google Scholar 

  6. “Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, London, UK (2014)

    Google Scholar 

  7. Arabski, M., et al.: The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria. Microbiol. Res. 170, 242–247 (2015)

    Google Scholar 

  8. Dickson, R.P., et al.: Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016)

    Google Scholar 

  9. Delcour, A.H.: Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794, 808–816 (2009)

    Google Scholar 

  10. David, F., Hebeisen, M., Schade, G., Franco-Lara, E., Di Berardino, M.: Viability and membrane potential analysis of bacillus megaterium cells by impedance flow cytometry. Biotechnol. Bioeng. 109, 483–492 (2012)

    Google Scholar 

  11. Conteduca, D., Brunetti, G., Dell’Olio, F., Armenise, M.N., Krauss, T. F., Ciminelli, C.: Monitoring of individual bacteria using electro-photonic traps. Biomed. Optics Express 10, 3463–3471 (2019)

    Google Scholar 

  12. Petrovszki, D., et al.: An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria. Microelectron. Eng. 239–240, 111523 (2021)

    Google Scholar 

  13. Kim, D., Sonker, M., Ros, A.: Dielectrophoresis: from molecular to micrometer-scale analytes. Anal. Chem. 91, 277−295 (2019)

    Google Scholar 

  14. Rahman, N.A., Ibrahim, F., Yafouz, B.: Dielectrophoresis for biomedical sciences applications: a review. Sensors 17, 449 (2017)

    Google Scholar 

  15. Pethig, R.: Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)

    Google Scholar 

  16. Bai, W., Zhao, K.S., Asami, K.: Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model. Biophys. Chem. 122, 136–142 (2006)

    Google Scholar 

  17. Subramanian, S., Tolstaya, E.I., Winkler, T., Bentley, W.E., Ghodssi, R.: An integrated microsystem for real-time detection and threshold-activated treatment of bacterial biofilms. ACS Appl. Mater. Interfaces 9, 31362–31371 (2017)

    Google Scholar 

  18. Chung, C.-C., Cheng, F., Chen, H.-M., Kan, H.-C., Yang, W.-H., Chang, H.-C.: Screening of antibiotic susceptibility to β-lactam-induced elongation of gram-negative bacteria based on dielectrophoresis. Anal. Chem. 84, 3347–3354 (2012)

    Google Scholar 

  19. Del Moral-Zamora, B., et al.: Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: application to Escherichia coli. Electrophoresis 36, 1405–1413 (2015)

    Google Scholar 

  20. Garcia, P.A., et al.: Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236, 127–136 (2010)

    Google Scholar 

  21. Jen, C.P., Chen, T.W.: Selective trap** of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed. Microdevices 11, 597–607 (2009)

    Google Scholar 

  22. Castellarnau, M., Errachid, A., Madrid, C., Juarez, A., Samitier, J.: Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys. J. 91, 3937–3945 (2006)

    Google Scholar 

  23. Lewis, C.L., Craig, C.C., Senecal, A.G.: Mass and density measurements of live and dead gram-negative and gram-positive bacterial populations. Appl. Environ. Microbiol. 80, 3622–3631 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ciminelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

di Toma, A., Brunetti, G., Sasanelli, N., Armenise, M.N., Ciminelli, C. (2023). Sorting of Live/dead Escherichia Coli by Means of Dielectrophoresis for Rapid Antimicrobial Susceptibility Testing. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation