Nonautonomous Bifurcation

  • Chapter
  • First Online:
Nonautonomous Bifurcation Theory

Abstract

As in the continuous time situation, bifurcations in nonautonomous difference equations are classified as attractor bifurcation, solution bifurcation and bifurcation of minimal sets and invariant graphs. In reviewing sufficient conditions for such bifurcations, we try to complement those results covered for ordinary differential equations already. A nonautonomous Sacker–Neimark bifurcation is understood as an attractor bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 90.94
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Anagnostopoulou and T. Jäger, Nonautonomous saddle-node bifurcations: Random and deterministic forcing, J. Differ. Equations 253 (2012), no. 2, 379–399.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Anagnostopoulou, T. Jäger, and G. Keller, A model for the nonautonomous Hopf bifurcation, Nonlinearity 28 (2015), no. 7, 2587–2616.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Arnold, Random dynamical systems, Monographs in Mathematics, Springer, Berlin etc., 1998.

    Book  Google Scholar 

  4. L. Arnold, E. Oeljeklaus, and E. Pardoux, Almost sure and moment stability for linear Ito equations, Lyapunov exponents. Proceedings, Bremen 1984 (L. Arnold and V. Wihstutz, eds.), Springer, Berlin etc., 1986, pp. 129–159.

    Google Scholar 

  5. D.K. Arrowsmith and C.M. Place, An introduction to dynamical systems., Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  6. S.L. Campbell and C.D. Meyer, Generalized inverses of linear transformations, Surveys and reference works in mathematics, vol. 4, Pitman, San Francisco, 1979.

    Google Scholar 

  7. G. Fuhrmann, Non-smooth saddle-node bifurcations. I: Existence of an SNA, Ergodic Theory Dyn. Syst. 36 (2016), no. 4, 1130–1155.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Fuhrmann, M. Gröger, and T. Jäger, Non-smooth saddle-node bifurcations. II: Dimensions of strange attractors, Ergodic Theory Dyn. Syst. 38 (2018), no. 8, 2989–3011.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Giesl and M. Rasmussen, A note on almost periodic variational equations, Commun. Pure Appl. Anal. 10 (2011), no. 3, 983–994.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Glendinning, Intermittency and strange nonchaotic attractors in quasiperiodically forced circle maps, Physics Letters A 244 (1998), 545–550.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Glendinning, T. Jäger, and G. Keller, How chaotic are strange non-chaotic attractors, Nonlinearity 19 (2006), no. 9, 2005–2022.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Grebogi, E. Ott, S. Pelikan, and J.A. Yorke, Strange attractors that are not chaotic, Physica D 13 (1984), 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Hamaya, Bifurcation of almost periodic solutions in difference equations, J. Difference Equ. Appl. 10 (2004), no. 3, 257–297.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.R. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de moser sur le tore de dimension 2, Comm. Math. Helv. 58 (1983), 453–502.

    Article  MATH  Google Scholar 

  15. T. Hüls, A model function for non-autonomous bifurcations of maps, Discrete Contin. Dyn. Syst. (Series B) 7 (2007), no. 2, 351–363.

    MathSciNet  MATH  Google Scholar 

  16. T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton–Holt Ricker model, SIAM J. Applied Dynamical Systems 13 (2014), no. 4, 1442–1488.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Jäger, Elliptic stars in a chaotic night, J. Lond. Math. Soc. 84 (2011), no. 3, 595–611.

    Article  MathSciNet  MATH  Google Scholar 

  18. À. Jorba, F.J. Muñoz-Almaraz, and J.C. Tatjer, On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-dmaps, J. Difference Equ. Appl. 24 (2018), no. 4, 588–608.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Keller, A note on strange nonchaotic attractors, Fundamenta Mathematicae 151 (1996), no. 2, 139–148.

    MathSciNet  MATH  Google Scholar 

  20. H. Keller and G. Ochs, Numerical approximation of random attractors, Stochastic dynamics (H. Crauel and M. Gundlach, eds.), Springer, Berlin etc., 1999, pp. 93–115.

    Google Scholar 

  21. H. Kielhöfer, Bifurcation theory: An introduction with applications to PDEs, second ed., Applied Mathematical Sciences, vol. 156, Springer, Berlin etc., 2012.

    Google Scholar 

  22. P.E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire solutions, J. Dyn. Differ. Equations 23 (2011), no. 3, 437–450.

    Article  MathSciNet  MATH  Google Scholar 

  23. P.E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, Mathematical Surveys and Monographs, vol. 176, AMS, Providence, RI, 2011.

    Google Scholar 

  24. M.A. Krasnosel’skij, V.Sh. Burd, and Yu.S. Kolesov, Nonlinear almost periodic oscillations, A Halsted Press Book, John Wiley & Sons, Jerusalem–London, 1973.

    Google Scholar 

  25. J.A. Langa, J.C. Robinson, and A. Suárez, Stability, instability, and bifurcation phenomena in non-autonomous differential equations, Nonlinearity 15 (2002), 887–903.

    Article  MathSciNet  MATH  Google Scholar 

  26. _________ , Bifurcation from zero of a complete trajectory for nonautonomous logistic PDEs, Int. J. Bifurcation Chaos 15 (2005), no. 8, 2663–2669.

    Article  MathSciNet  MATH  Google Scholar 

  27. _________ , Bifurcations in non-autonomous scalar equations, J. Differ. Equations 221 (2006), 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Ma and S. Wang, Bifurcation theory and applications, Series on Nonlinear Sciences, vol. 53, World Scientific, Hackensack, NJ, 2005.

    Book  Google Scholar 

  29. R.M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459–467.

    Article  MATH  Google Scholar 

  30. J. Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  31. S.S. Negi, A. Prasad, and R. Ramaswamy, Bifurcations and transitions in the quasiperiodically driven logistic map, Physica D 1–2 (2000), no. 145, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  32. _________ , Strange nonchaotic attractors, Int. J. Bifurcation Chaos 2 (2001), no. 11, 291–309.

    MathSciNet  MATH  Google Scholar 

  33. T.Y. Nguyen, T.S. Doan, T. Jäger, and S. Siegmund, Non-autonomous saddle-node bifurcations in the quasiperiodically forced logistic map, Int. J. Bifurcation Chaos 21 (2011), no. 5, 1427–1438.

    Article  MATH  Google Scholar 

  34. E. Ott, Strange attractors and chaotic motions of dynamical systems, Rev. Mod. Phys. 53 (1981), 655–671.

    Article  MathSciNet  MATH  Google Scholar 

  35. _________ , On exponential trichotomy of linear difference equations, Appl. Anal. 40 (1991), 89–109.

    Article  MathSciNet  Google Scholar 

  36. J. Pejsachowicz and R. Skiba, Topology and homoclinic trajectories of discrete dynamical systems, Discrete Contin. Dyn. Syst. (Series S) 6 (2013), no. 4, 1077–1094.

    Article  MathSciNet  MATH  Google Scholar 

  37. _________ , Geometric theory of discrete nonautonomous dynamical systems, Lect. Notes Math., vol. 2002, Springer, Berlin etc., 2010.

    Google Scholar 

  38. _________ , Nonautonomous bifurcation of bounded solutions I: A Lyapunov–Schmidt approach, Discrete Contin. Dyn. Syst. (Series B) 14 (2010), no. 2, 739–776.

    MathSciNet  Google Scholar 

  39. _________ , Bifurcations in nonautonomous dynamical systems: Results and tools in discrete time, Proceedings of the workshop on future directions in difference equations, Vigo, Spain, June 13–17, 2011 (Vigo) (E. Liz, ed.), Colección on Congresos, no. 69, Servizo de Publicacións de Universidade de Vigo, 2011, pp. 163–212.

    Google Scholar 

  40. _________ , Nonautonomous bifurcation of bounded solutions II: A shovel bifurcation pattern, Discrete Contin. Dyn. Syst. (Series A) 31 (2011), no. 1, 941–973.

    Google Scholar 

  41. _________ , Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal. 10 (2011), no. 3, 937–961.

    Google Scholar 

  42. _________ , Persistence and imperfection of nonautonomous bifurcation patterns, J. Differ. Equations 250 (2011), 3874–3906.

    Google Scholar 

  43. _________ , Corrigendum to “A note on the dichotomy spectrum”, J. Difference Equ. Appl. 18 (2012), no. 7, 1257–1261.

    Google Scholar 

  44. _________ , Nonautonomous bifurcation of bounded solutions: Crossing curve situations, Stoch. Dyn. 12 (2012), no. 2.

    Google Scholar 

  45. A. Prasad, V. Mehra, and R. Ramaswamy, Strange nonchaotic attractors in the quasiperiodically forced logistic map., Physical Review E 2 (1998), no. 57, 1576–1584.

    Article  Google Scholar 

  46. M. Rasmussen, Towards a bifurcation theory for nonautonomous difference equations, J. Difference Equ. Appl. 12 (2006), no. 3–4, 297–312.

    Article  MathSciNet  MATH  Google Scholar 

  47. R.J. Sacker, Bifurcation in the almost periodic Ricker map, J. Difference Equ. Appl. 25 (2019), no. 5, 599–618.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Skiba and N. Waterstraat, The index bundle and multiparameter bifurcations for discrete dynamical systems, Discrete Contin. Dyn. Syst. (Series A) 37 (2017), no. 11, 5603–5629.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Stark, Transitive sets for quasi-periodically forced monotone maps, Dyn. Syst. 18 (2003), no. 4, 351–364.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Stark and R. Sturman, Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity 13 (2000), no. 2, 113–143.

    MathSciNet  MATH  Google Scholar 

  51. V.I. Tkachenko, On the exponential dichotomy of linear difference equations, Ukr. Math. J. 48 (1996), no. 10, 1600–1608.

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Texts in Applied Mathematics, vol. 2, Springer, Berlin etc., 1990.

    MATH  Google Scholar 

  53. E. Zeidler, Nonlinear functional analysis and its applications I (Fixed-points theorems), Springer, Berlin etc., 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anagnostopoulou, V., Pötzsche, C., Rasmussen, M. (2023). Nonautonomous Bifurcation. In: Nonautonomous Bifurcation Theory. Frontiers in Applied Dynamical Systems: Reviews and Tutorials. Springer, Cham. https://doi.org/10.1007/978-3-031-29842-4_6

Download citation

Publish with us

Policies and ethics

Navigation