The Impact of the Size of the Partition in the Performance of Bat Algorithm

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 649))

  • 545 Accesses

Abstract

In this article the influence of the maximum partition size on the performance of a discrete version of the Bat Algorithm (BA) is studied. The Bat Algorithm is a population-based meta-heuristic based on swarm intelligence developed for continuous problems with exceptional results. Thus, it has a set of parameters that must be studied in order to enhance the performance of the meta-heuristic. This paper aims to investigate whether the maximum size of the partitions used for the search operations throughout the algorithm should not also be considered as a parameter. First, a literature review was conducted, with special focus on the parameterization of the meta-heuristics and each of the parameters currently used in the algorithm, followed by its implementation in VBA in Microsoft Excel. After a thorough parameterization of the discrete algorithm, different maximum partition sizes were applied to 30 normally distributed instances to draw broader conclusions. In addition, they were also tested for different sizes of the problem to see if they had an influence on the results obtained. Finally, a statistical analysis was carried out, where it was possible to conclude that there was no maximum partition value for which superiority could be proven, and so the size of the partition should be considered a parameter in the bat algorithm and included in the parametrization of BA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    According to the central limit theorem, if we have a population with mean μ and standard deviation σ with sufficiently large random samples from the population, then the distribution of the sample mean will be approximately normally distributed [27].

References

  1. Morales-Castañeda, B., Zaldívar, D., Cuevas, E., Fausto, F., Rodríguez, A.: A better balance in metaheuristic algorithms: does it exist? Swarm Evol. Comput. 54(March) (2020)

    Google Scholar 

  2. Meng, Z., Li, G., Wang, X., Sait, S.M., Yıldız, A.R.: A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch. Comput. Methods Eng. 28(3), 1853–1869 (2020). https://doi.org/10.1007/s11831-020-09443-z

    Article  MathSciNet  Google Scholar 

  3. Iwendi, C., Maddikunta, P.K.R., Gadekallu, T.R., Lakshmanna, K., Bashir, A.K., Piran, M.J.: A metaheuristic optimization approach for energy efficiency in the IoT networks. Softw. - Pract. Exp. 51(12), 2558–2571 (2021)

    Google Scholar 

  4. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T., Khorami, M.: Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng. Comput. 36(4), 1539–1558 (2019). https://doi.org/10.1007/s00366-019-00780-7

    Article  Google Scholar 

  5. Osaba, E., et al.: A tutorial on the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm Evol. Comput. 64(April), 100888 (2021)

    Google Scholar 

  6. AbdElaziz, M., Elsheikh, A.H., Oliva, D., Abualigah, L., Lu, S., Ewees, A.A.: Advanced metaheuristic techniques for mechanical design problems: review. Arch. Comput. Methods Eng. 29(1), 695–716 (2021). https://doi.org/10.1007/s11831-021-09589-4

    Article  MathSciNet  Google Scholar 

  7. Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk, M.S., AlAtabany, W.: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl. Intell. 51(3), 1531–1551 (2020). https://doi.org/10.1007/s10489-020-01893-z

    Article  Google Scholar 

  8. Talatahari, S., Azizi, M.: Chaos game optimization: a novel metaheuristic algorithm. Artif. Intell. Rev. 54(2), 917–1004 (2021). Springer Netherlands

    Google Scholar 

  9. Agrawal, P., Abutarboush, H.F., Ganesh, T., Mohamed, A.W.: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9, 26766–26791 (2021)

    Article  Google Scholar 

  10. Halim, A.H., Ismail, I., Das, S.: Performance assessment of the metaheuristic optimization algorithms: an exhaustive review. Artif. Intell. Rev. 54(3), 2323–2409 (2021). Springer Netherlands

    Google Scholar 

  11. Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90(November), 2020 (2019)

    Google Scholar 

  12. Ahmadianfar, I., BozorgHaddad, O., Chu, X.: Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. (NY) 540, 131–159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Article  Google Scholar 

  14. Sousa, B., Guerreiro, R., Santos, A. S., Bastos, J. A., Varela, L. R., & Brito, M. F.: Bat algorithm for discrete optimization problems: an analysis. In: Machado, J., et al. (eds.) ICIENG 2022. LNCS, pp. 161–172. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09382-1_14

  15. Moreira, C., Costa, C., Santos, A.S., Bastos, J.A., Varela, L.R., Brito, M.F.: Firefly and cuckoo search algorithm for scheduling problems: a performance analysis. In: Machado, J., et al. (eds.) ICIENG 2022, LNCS, pp. 75–88. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09360-9_7

  16. Sampieri, R.H., Schroyens, W.J., Schaeken, W., D’Ydewalle, G.: Local search for planning and scheduling. Think. Reason. 7(2), 121–172 (2001)

    Google Scholar 

  17. Madureira, A., Ramos, C., Silva, S.C.: Toward dynamic scheduling through evolutionary computing. WSEAS Trans. Syst. 3(4), 1596–1604 (2004)

    Google Scholar 

  18. Madureira, A., Ramos, C., Silva, S.D.C.: Using genetic algorithms for dynamic scheduling. In: 14th Annual Production and Operations Management Society Conference (POMS 2003) (2003)

    Google Scholar 

  19. Madureira, A.M., Sousa, N., Pereira, I.: Swarm intelligence for scheduling: a review. In: Second International Conference on Business Sustainability (BS’2011) (2011)

    Google Scholar 

  20. Madureira, A., Santos, F., Pereira, I.: Self-managing agents for dynamic scheduling in manufacturing. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. pp. 2187–2192, July 2008

    Google Scholar 

  21. Santos, A.S., Madureira, A.M.: A self-parametrization framework for meta-heuristics. Mathematics 10(3), 1–23 (2022)

    Google Scholar 

  22. Montero, E., Riff, M.C., Neveu, B.: A beginner’s guide to tuning methods. Appl. Soft Comput. J. 17, 39–51 (2014)

    Article  Google Scholar 

  23. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  24. Yang, X.S.: A new metaheuristic Bat-inspired algorithm. Stud. Comput. Intell. 284, 65–74 (2010)

    Article  MATH  Google Scholar 

  25. Yang, X.S.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)

    Article  Google Scholar 

  26. Luo, Q., Zhou, Y., **e, J., Ma, M., Li, L.: Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci. World J. 2014 (2014)

    Google Scholar 

  27. Kwak, S.G., Kim, J.H.: Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70(2), 144–156 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André S. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, B., Santos, A.S., Madureira, A.M. (2023). The Impact of the Size of the Partition in the Performance of Bat Algorithm. In: Abraham, A., Bajaj, A., Gandhi, N., Madureira, A.M., Kahraman, C. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2022. Lecture Notes in Networks and Systems, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-27499-2_16

Download citation

Publish with us

Policies and ethics

Navigation