Hierarchically Porous Metal Phosphates and Phosphonates: Emerging Materials Toward Advance Applications

  • Chapter
  • First Online:
Metal Phosphates and Phosphonates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 341 Accesses

Abstract

The ability to create hierarchically porous nanostructures using materials based on metal phosphate and phosphonates is very astonishing. The major drivers of the scientific community are focused on the need to rationalize novel synthetic ways to synthesize these materials under controlled settings especially related to morphology. In this chapter, we have highlighted different synthetic techniques that have been employed in the synthesis of metal phosphonates and how the properties of porous metal phosphonates and phosphates are being impacted. Nanoporous metal phosphonates are proliferating rapidly owing to their versatile applications in different areas, including energy storage, catalysis, environmental intervention, and biology, among others, which are also discussed in this chaptesr. It is expected that the chemistry of porous metal phosphonates and phosphates would advance as a result of their utilization in domains like biology and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shah, H.-U.R., Ahmad, K., Bashir, M.S., Shah, S.S.A., Najam, T., Ashfaq, M.: Metal organic frameworks for efficient catalytic conversion of CO2 and CO into applied products. Mol. Catal. 517, 112055 (2022)

    Article  CAS  Google Scholar 

  2. Najam, T., Ahmad Khan, N., Ahmad Shah, S.S., Ahmad, K., Sufyan Javed, M., Suleman, S., Sohail Bashir, M., Hasnat, M.A, Rahman, M.M.: Metal-Organic frameworks derived electrocatalysts for oxygen and carbon dioxide reduction reaction, the chemical record, 22 e202100329 (2022)

    Google Scholar 

  3. Bashir, M.S.: Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem. Eng. Res. Des. 175, 102–114 (2021)

    Article  CAS  Google Scholar 

  4. Bashir, M.S., Jiang, X., Li, S., Kong, X.Z.: Highly uniform and porous polyurea microspheres: clean and easy preparation by interface polymerization, palladium incorporation, and high catalytic performance for dye degradation, 7 (2019)

    Google Scholar 

  5. Bashir, M.S., Jiang, X., Kong, X.Z.: Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. Eur. Polymer J. 129, 109652 (2020)

    Article  CAS  Google Scholar 

  6. Jiang, X., Bashir, M.S., Zhang, F., Kong, X.Z.: Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization. Eur. Polymer J. 109, 93–100 (2018)

    Article  CAS  Google Scholar 

  7. Bashir, M.S., Jiang, X., Yang, X., Kong, X.Z.: Porous polyurea supported pd catalyst: easy preparation, full characterization, and high activity and reusability in reduction of hexavalent chromium in aqueous system. Ind. Eng. Chem. Res. 60, 8108–8119 (2021)

    Article  CAS  Google Scholar 

  8. Bashir, M.S., Ramzan, N., Najam, T., Abbas, G., Gu, X., Arif, M., Qasim, M., Bashir, H., Shah, S.S.A., Sillanpää, M.: Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 829, 154475 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. Wei, Q., **ong, F., Tan, S., Huang, L., Lan, E., Dunn, B., Mai, L.: One-dimensional nanomaterials: design, fabrication and applications in electrochemical energy. Storage Adv. Mater 29, 1602300 (2017)

    Article  Google Scholar 

  10. Lv, X.W., Weng, C.C., Zhu, Y.P., Yuan, Z.Y.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: A critical review. Small 17, 2005304 (2021)

    Article  CAS  Google Scholar 

  11. Azhar, U., Huo, Z., Yaqub, R., Xu, A., Zhang, S., Geng, B.: Non-crosslinked fluorinated copolymer particles stabilized Pickering high internal phase emulsion for fabrication of porous polymer monoliths. Polymer 172, 160–169 (2019)

    Article  CAS  Google Scholar 

  12. Ma, J., Zhang, L., Geng, B., Azhar, U., Xu, A., Zhang, S.: Preparation of thermo-responsive and cross-linked fluorinated nanoparticles via RAFT-Mediated aqueous polymerization in nanoreactors, molecules, 2017

    Google Scholar 

  13. Azhar, U., Zong, C., Wan, X., Xu, A., Yabin, Z., Liu, J., Zhang, S., Geng, B.: Methyl methacrylate HIPE solely stabilized by fluorinated Di-block copolymer for fabrication of highly porous and interconnected polymer monoliths, Chemistry―A European Journal, 24 11619–11626 (2018)

    Google Scholar 

  14. Mu, J., Liu, J., Ran, Z., Arif, M., Gao, M., Wang, C., Ji, S.: Critical role of CUS in the Au/MOF-808(Zr) catalyst for reaction of CO2 with Amine/H2 via N-Methylation and N-Formylation. Ind. Eng. Chem. Res. 59, 6543–6555 (2020)

    Article  CAS  Google Scholar 

  15. Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M., Yunus, U., Iqbal, R., Nguyen, T.A., Slimani, Y., Song, H., Zhao, W.: Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chem. Eng. J. 409, 128205 (2021)

    Article  CAS  Google Scholar 

  16. Nadeem, M., Yasin, G., Bhatti, M.H., Mehmood, M., Arif, M., Dai, L.: Pt-M bimetallic nanoparticles (M = Ni, Cu, Er) supported on metal organic framework-derived N-doped nanostructured carbon for hydrogen evolution and oxygen evolution reaction. J. Power Sources 402, 34–42 (2018)

    Article  CAS  Google Scholar 

  17. Mysore Ramesha, B., Meynen, V.: Advances and challenges in the creation of porous metal phosphonates, Materials, 13 5366 (2020)

    Google Scholar 

  18. Clearfield, A.: Recent advances in metal phosphonate chemistry. Curr. Opin. Solid State Mater. Sci. 1, 268–278 (1996)

    Article  CAS  Google Scholar 

  19. Wilke, M., Bach, S., Gorelik, T.E., Kolb, U., Tremel, W., Emmerling, F.: Divalent metal phosphonates–new aspects for syntheses, in situ characterization and structure solution, Zeitschrift für Kristallographie-Crystalline Materials, 232 209–222 (2017)

    Google Scholar 

  20. Shimizu, G.K., Vaidhyanathan, R., Taylor, J.M.: Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Assi, H., Mouchaham, G., Steunou, N., Devic, T., Serre, C.: Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chem. Soc. Rev. 46, 3431–3452 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Siemensmeyer, K., Peeples, C.A., Tholen, P., Schmitt, F.J., Çoşut, B., Hanna, G., Yücesan, G.: Phosphonate Metal-Organic Frameworks: A Novel Family of Semiconductors. Adv. Mater. 32, 2000474 (2020)

    Article  CAS  Google Scholar 

  23. Ma, K.-R., Zhang, D.-J., Zhu, Y.-L.: Structure and characterization of a novel 3D lead phosphonate metal-organic framework with cationic layer based on weak Pb–O (N) Contact. Aust. J. Chem. 63, 452–457 (2010)

    Article  CAS  Google Scholar 

  24. Gu, D., Schüth, F.: Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 43, 313–344 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Soler-Illia, G.J., Azzaroni, O.: Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 40, 1107–1150 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, J.M., Mah, R.K., Moudrakovski, I.L., Ratcliffe, C.I., Vaidhyanathan, R., Shimizu, G.K.: Facile proton conduction via ordered water molecules in a phosphonate metal− organic framework. J. Am. Chem. Soc. 132, 14055–14057 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L., **, L., Liu, B., He, J.: Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templates. Front. Chem. 7, 22 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorzing, G.R., Trump, B.A., Brown, C.M., Bloch, E.D.: Selective gas adsorption in highly porous chromium (II)-based metal–organic polyhedra. Chem. Mater. 29, 8583–8587 (2017)

    Article  CAS  Google Scholar 

  29. Wang, N., Sun, Q., Yu, J.: Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv. Mater. 31, 1803966 (2019)

    Article  Google Scholar 

  30. Tian, Y., Xu, S.-Q., Qian, C., Pang, Z.-F., Jiang, G.-F., Zhao, X.: Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two D 2h symmetrical building blocks. Chem. Commun. 52, 11704–11707 (2016)

    Article  CAS  Google Scholar 

  31. Zhu, Y.-P., Ren, T.-Z., Yuan, Z.-Y.: Insights into mesoporous metal phosphonate hybrid materials for catalysis, Catal. Sci. & Technol. 5 4258-4279 (2015)

    Google Scholar 

  32. Ma, T.Y., Li, H., Tang, A.N., Yuan, Z.Y.: Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small 7, 1827–1837 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. El-Refaei, S.M., Russo, P.A., Pinna, N.: Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values. ACS Appl. Mater. Interfaces. 13, 22077–22097 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    Article  CAS  Google Scholar 

  35. Pramanik, M., Tsujimoto, Y., Malgras, V., Dou, S.X., Kim, J.H., Yamauchi, Y.: Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries. Chem. Mater. 27, 1082–1089 (2015)

    Article  CAS  Google Scholar 

  36. Bhanja, P., Na, J., **g, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: A new material horizon toward emerging applications. Chem. Mater. 31, 5343–5362 (2019)

    Article  CAS  Google Scholar 

  37. Pawlowski, S., Crespo, J.G., Velizarov, S.: Profiled ion exchange membranes: A comprehensible review. Int. J. Mol. Sci. 20, 165 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arif, M., Yasin, G., Shakeel, M., Mushtaq, M.A., Ye, W., Fang, X., Ji, S., Yan, D.: Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting, Materials Chemistry. Frontiers 3, 520–531 (2019)

    CAS  Google Scholar 

  39. Arif, M., Yasin, G., Shakeel, M., Mushtaq, M.A., Ye, W., Fang, X., Ji, S., Yan, D.: Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting, Journal of Energy. Chemistry 58, 237–246 (2021)

    CAS  Google Scholar 

  40. Arif, M., Yasin, G., Luo, L., Ye, W., Mushtaq, M.A., Fang, X., **ang, X., Ji, S., Yan, D.: Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B 265, 118559 (2020)

    Article  CAS  Google Scholar 

  41. Khan, K., Liu, T., Arif, M., Yan, X., Hossain, M.D., Rehman, F., Zhou, S., Yang, J., Sun, C., Bae, S.-H., Kim, J., Amine, K., Pan, X., Luo, Z.: Laser-Irradiated holey graphene-supported single-atom catalyst towards hydrogen evolution and oxygen reduction. Adv. Energy Mater. 11, 2101619 (2021)

    Article  CAS  Google Scholar 

  42. Zhang, X., Shakeel, M., Li, B., Arif, M., Kong, X., Liu, J., Zuo, S.: Fabrication of 3-D ZnO/CN nanorods for photo-/electrocatalytic water splitting: An efficient morphology for charge carriers transportation. Int. J. Hydrogen Energy 44, 21821–21836 (2019)

    Article  CAS  Google Scholar 

  43. Shakeel, M., Li, B., Yasin, G., Arif, M., Rehman, W., Khan, H.D.: In Situ Fabrication of Foamed Titania Carbon Nitride Nanocomposite and Its Synergetic Visible-Light Photocatalytic Performance. Ind. Eng. Chem. Res. 57, 8152–8159 (2018)

    Article  CAS  Google Scholar 

  44. Shakeel, M., Arif, M., Yasin, G., Li, B., Khan, A.U., Khan, F.U., Baloch, M.K.: Hollow mesoporous architecture: A high performance Bi-functional photoelectrocatalyst for overall water splitting. Electrochim. Acta 268, 163–172 (2018)

    Article  CAS  Google Scholar 

  45. Arif, M., Yasin, G., Shakeel, M., Fang, X., Gao, R., Ji, S., Yan, D.: Coupling of Bifunctional CoMn-Layered Double Hydroxide@Graphitic C3N4 Nanohybrids towards Efficient Photoelectrochemical Overall Water Splitting, Chemistry―An Asian Journal, 13 1045–1052 (2018)

    Google Scholar 

  46. Silbernagel, R., Martin, C.H., Clearfield, A.: Zirconium (IV) phosphonate–phosphates as efficient ion-exchange materials. Inorg. Chem. 55, 1651–1656 (2016)

    Article  CAS  PubMed  Google Scholar 

  47. Bhanja, P., Bhaumik, A.: Porous nanomaterials as green catalyst for the conversion of biomass to bioenergy. Fuel 185, 432–441 (2016)

    Article  CAS  Google Scholar 

  48. Fu, R., Hu, S., Wu, X.: Two new molecular zinc phosphonates with bright luminescence for sensing UV radiation. CrystEngComm 15, 8937–8940 (2013)

    Article  CAS  Google Scholar 

  49. Zhao, H., Weng, C.-C., Ren, J.-T., Ge, L., Liu, Y.-P., Yuan, Z.-Y.: Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chin. J. Catal. 41, 259–267 (2020)

    Article  CAS  Google Scholar 

  50. Xanthopoulos, K., Anagnostou, Z., Chalkiadakis, S., Choquesillo-Lazarte, D., Mezei, G., Zaręba, J.K., Zoń, J., Demadis, K.D.: Platonic relationships in metal phosphonate chemistry: ionic metal phosphonates, Crystals, 9 301 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad S. Bashir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azhar, U., Bashir, M.S., Arif, M., Sagir, M. (2023). Hierarchically Porous Metal Phosphates and Phosphonates: Emerging Materials Toward Advance Applications. In: Gupta, R.K. (eds) Metal Phosphates and Phosphonates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-27062-8_2

Download citation

Publish with us

Policies and ethics

Navigation