Cognitive Reserve: A Life-Course Perspective

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 472 Accesses

Abstract

The concept of reserve has been developed to account for the discontinuity between the extent of brain damage at its clinical manifestation in the form of cognitive decline or dementia. In this chapter, we discuss contributors to cognitive reserve from various stages of the life-course, including childhood, early adulthood, middle age, and late life. Evidence from observational studies as well as intervention trials is presented and assessed. We conclude by arguing that reserve formation in dementia risk is a life-course process whereby baseline cognitive abilities are subjected to modulation by subsequent experiences at diverse stages over the entire life-course. Variations among individuals in their ability to withstand age-related brain changes are ultimately dependent on their life-time accumulation of mental, physical, and lifestyle inputs into cognitive reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andel R, Crowe M, Pedersen NL, Mortimer J, Crimmins E, Johansson B, et al. Complexity of work and risk of Alzheimer’s disease: a population-based study of Swedish twins. J Gerontol B Psychol Sci Soc Sci. 2005;60(5):P251–8.

    PubMed  Google Scholar 

  • Andel R, Vigen C, Mack WJ, Clark LJ, Gatz M. The effect of education and occupational complexity on rate of cognitive decline in Alzheimer’s patients. J Int Neuropsychol Soc. 2006;12(01):147–52.

    PubMed  Google Scholar 

  • Babiloni C, Ferri R, Noce G, Lizio R, Lopez S, Lorenzo I, et al. Abnormalities of cortical sources of resting state alpha electroencephalographic rhythms are related to education attainment in cognitively unimpaired seniors and patients with Alzheimer’s disease and amnesic mild cognitive impairment. Cereb Cortex. 2021;31(4):2220–37.

    PubMed  Google Scholar 

  • Boots EA, Schultz SA, Almeida RP, Oh JM, Koscik RL, Dowling MN, et al. Occupational complexity and cognitive reserve in a middle-aged cohort at risk for Alzheimer’s disease. Arch Clin Neuropsychol. 2015;30(7):634–42.

    PubMed  PubMed Central  Google Scholar 

  • Borroni B, Premi E, Agosti C, Alberici A, Garibotto V, Bellelli G, et al. Revisiting brain reserve hypothesis in frontotemporal dementia: evidence from a brain perfusion study. Dement Geriatr Cogn Disord. 2009;28(2):130–5.

    CAS  PubMed  Google Scholar 

  • Brayne C, Ince PG, Keage HAD, McKeith IG, Matthews FE, Polvikoski T, et al. Education, the brain and dementia: neuroprotection or compensation? Brain. 2010:2210–6.

    Google Scholar 

  • Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A, Grady CL, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat Rev Neurosci. 2018;19(11):701–10. https://doi.org/10.1038/s41583-018-0068-2. Erratum in: Nat Rev Neurosci. 2018;19(12):772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb J, Wolf PA, Au R, White R, D’agostino R. The effect of education on the incidence of dementia and Alzheimer’s disease in the Framingham study. Neurology. 1995;45(9):1707–12.

    CAS  PubMed  Google Scholar 

  • Crooks VC, Lubben J, Petitti DB, Little D, Chiu V. Social network, cognitive function, and dementia incidence among elderly women. Am J Public Health. 2008;98(7):1221–7.

    PubMed  PubMed Central  Google Scholar 

  • Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, et al. Clinico-pathologic studies in dementia nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 1988;38(11):1682.

    CAS  PubMed  Google Scholar 

  • Dartigues J-F, Gagnon M, Letenneur L, Barberger-Gateau P, Commenges D, Evaldre M, et al. Principal lifetime occupation and cognitive impairment in a French elderly cohort (Paquid). Am J Epidemiol. 1992;135(9):981–8.

    CAS  PubMed  Google Scholar 

  • Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF, et al. Apolipoprotein e gene variability and cognitive functions at age 79: a follow-up of the Scottish mental survey of 1932. Psychol Aging. 2004;19(2):367.

    PubMed  Google Scholar 

  • Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian birth cohorts of 1921 and 1936. Int J Epidemiol. 2012;41(6):1576–84.

    PubMed  Google Scholar 

  • Deckers K, Cadar D, van Boxtel MPJ, Verhey FRJ, Steptoe A, Köhler S. Modifiable risk factors explain socioeconomic inequalities in dementia risk: evidence from a population-based prospective cohort study. J Alzheimers Dis. 2019;71(2):549–57.

    PubMed  PubMed Central  Google Scholar 

  • Dekhtyar S, Wang HX, Scott K, Goodman A, Koupil I, Herlitz A. A life-course study of cognitive reserve in dementia-from childhood to old age. Am J Geriatr Psychiatry. 2015;23(9):885–96.

    PubMed  Google Scholar 

  • Dekhtyar S, Marseglia A, Xu W, Darin-Mattsson A, Wang HX, Fratiglioni L. Genetic risk of dementia mitigated by cognitive reserve: a cohort study. Ann Neurol. 2019;86(1):68–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, et al. Genetic variants and functional pathways associated with resilience to Alzheimer’s disease. Brain. 2020;143(8):2561–75.

    PubMed  PubMed Central  Google Scholar 

  • Fancourt D, Aughterson H, Finn S, Walker E, Steptoe A. How leisure activities affect health: a narrative review and multi-level theoretical framework of mechanisms of action. Lancet Psychiatry. 2021;8(4):329–39.

    PubMed  PubMed Central  Google Scholar 

  • Fratiglioni L, Wang HX. Brain reserve hypothesis in dementia. J Alzheimers Dis. 2007;12(1):11–22.

    PubMed  Google Scholar 

  • Fratiglioni L, Wang H-X, Ericsson K, Maytan M, Winblad B. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet. 2000;355(9212):1315–9.

    CAS  PubMed  Google Scholar 

  • Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–53.

    PubMed  Google Scholar 

  • Gallo F, Kalpouzos G, Laukka EJ, Wang R, Qiu C, Bäckman L, Marseglia A, Fratiglioni L, Dekhtyar S. Cognitive trajectories and dementia risk: a comparison of two cognitive reserve measures. Front Aging Neurosci. 2021;13:737736. https://doi.org/10.3389/fnagi.2021.737736.

    Article  PubMed  PubMed Central  Google Scholar 

  • González HM, Tarraf W, Bowen ME, Johnson-Jennings MD, Fisher GG. What do parents have to do with my cognitive reserve? Life course perspectives on twelve-year cognitive decline. Neuroepidemiology. 2013;41(2):101–9. https://doi.org/10.1159/000350723. Epub 2013 Jul 11. PMID: 23860477.

    Article  PubMed  Google Scholar 

  • Gow AJ, Johnson W, Pattie A, Brett CE, Roberts B, Starr JM, et al. Stability and change in intelligence from age 11 to ages 70, 79, and 87: the lothian birth cohorts of 1921 and 1936. Psychol Aging. 2011;26(1):232–40.

    PubMed  Google Scholar 

  • Gow AJ, Johnson W, Mishra G, Richards M, Kuh D, Deary IJ. Is age kinder to the initially more able?: yes, and no. Intelligence. 2012;40(1):49–59.

    PubMed  PubMed Central  Google Scholar 

  • Gow AJ, Avlund K, Mortensen EL. Occupational characteristics and cognitive aging in the Glostrup 1914 Cohort. J Gerontol Ser B Psychol Sci Soc Sci. 2014;69:228–36.

    Google Scholar 

  • Groot C, van Loenhoud AC, Barkhof F, van Berckel BNM, Koene T, Teunissen CC, et al. Differential effects of cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology. 2018;90(2):e149–56.

    PubMed  Google Scholar 

  • Herlitz A, Dekhtyar S. A life-span approach to dementia. In: Nilsson L-G, Ohta N, editors. Dementia and memory. Hove and New York: Psychology Press; 2013. p. 110–23.

    Google Scholar 

  • Ihle A, Oris M, Sauter J, Spini D, Rimmele U, Maurer J, et al. The relation of low cognitive abilities to low well-being in old age is attenuated in individuals with greater cognitive reserve and greater social capital accumulated over the life course. Aging Ment Health. 2020;24(3):387–94.

    PubMed  Google Scholar 

  • Jokinen H, Melkas S, Madureira S, Verdelho A, Ferro JM, Fazekas F, et al. Cognitive reserve moderates long-term cognitive and functional outcome in cerebral small vessel disease. J Neurol Neurosurg Psychiatry. 2016;87(12):1296–302.

    PubMed  Google Scholar 

  • Karp A, Paillard-Borg S, Wang H-X, Silverstein M, Winblad B, Fratiglioni L. Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement Geriatr Cogn Disord. 2006;21(2):65–73.

    PubMed  Google Scholar 

  • Karp A, Andel R, Parker MG, Wang H-X, Winblad B, Fratiglioni L. Mentally stimulating activities at work during midlife and dementia risk after age 75: follow-up study from the Kungsholmen project. Am J Geriatr Psychiatry. 2009;17:227–36.

    PubMed  Google Scholar 

  • Katzman R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology. 1993;43(1):13–20.

    CAS  PubMed  Google Scholar 

  • Kim JP, Seo SW, Shin HY, Ye BS, Yang JJ, Kim C, et al. Effects of education on aging-related cortical thinning among cognitively normal individuals. Neurology. 2015;85(9):806–12.

    PubMed  Google Scholar 

  • Ko H, Kim S, Kim K, Jung SH, Shim I, Cha S, Lee H, Kim B, Yoon J, Ha TH, Kwak S, Kang JM, Lee JY, Kim J, Park WY, Nho K, Kim DK, Myung W, Won HH. Genome-wide association study of occupational attainment as a proxy for cognitive reserve. Brain. 2021:awab351. https://doi.org/10.1093/brain/awab351. Epub ahead of print. PMID: 34613391.

  • Kröger E, Andel R, Lindsay J, Benounissa Z, Verreault R, Laurin D. Is complexity of work associated with risk of dementia? The Canadian study of health and aging. Am J Epidemiol. 2008;167(7):820–30.

    PubMed  Google Scholar 

  • Langa KM. Is the risk of Alzheimer’s disease and dementia declining? Alzheimers Res Ther. 2015;7(1):34.

    PubMed  PubMed Central  Google Scholar 

  • Li X, Song R, Qi X, Xu H, Yang W, Kivipelto M, et al. Influence of cognitive reserve on cognitive trajectories: role of brain pathologies. Neurology. 2021;97(17):e1695–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovden M, Xu W, Wang HX. Lifestyle change and the prevention of cognitive decline and dementia: what is the evidence? Curr Opin Psychiatry. 2013;26(3):239–43.

    PubMed  Google Scholar 

  • Mahncke HW, Bronstone A, Merzenich MM. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res. 2006;157:81–109.

    PubMed  Google Scholar 

  • Marques P, Moreira P, Magalhães R, Costa P, Santos N, Zihl J, et al. The functional connectome of cognitive reserve. Hum Brain Mapp. 2016;37:3310–22.

    PubMed  PubMed Central  Google Scholar 

  • Massimo L, Zee J, **e SX, McMillan CT, Rascovsky K, Irwin DJ, et al. Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. Neurology. 2015;84(20):2070–5.

    PubMed  PubMed Central  Google Scholar 

  • McGurn B, Deary IJ, Starr JM. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology. 2008;71(14):1051–6.

    PubMed  Google Scholar 

  • Meng X, D’Arcy C. Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One. 2012;7(6):e38268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JC, Storandt M, McKeel DW Jr, Rubin EH, Price JL, Grant EA, et al. Cerebral amyloid deposition and diffuse plaques in “normal” aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology. 1996;46(3):707–19.

    CAS  PubMed  Google Scholar 

  • Nave G, Jung WH, Karlsson Linnér R, Kable JW, Koellinger PD. Are bigger brains smarter? Evidence from a large-scale preregistered study. Psychol Sci. 2019;30(1):43–54.

    PubMed  Google Scholar 

  • Nelson ME, Jester DJ, Petkus AJ, Andel R. Cognitive reserve, Alzheimer’s neuropathology, and risk of dementia: a systematic review and meta-analysis. Neuropsychol Rev. 2021;31(2):233–50.

    PubMed  PubMed Central  Google Scholar 

  • Neuropathology Group. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet. 2001;357(9251):169–75.

    Google Scholar 

  • Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2-year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63.

    PubMed  Google Scholar 

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    PubMed  Google Scholar 

  • Oltmanns J, Godde B, Winneke AH, Richter G, Niemann C, Voelcker-Rehage C, et al. Don’t lose your brain at work – the role of recurrent novelty at work in cognitive and brain aging. Front Psychol. 2017;8:117.

    PubMed  PubMed Central  Google Scholar 

  • Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2016;23(1):40–60.

    PubMed  Google Scholar 

  • Oveisgharan S, Wilson RS, Yu L, Schneider JA, Bennett DA. Association of early-life cognitive enrichment with Alzheimer disease pathological changes and cognitive decline. JAMA Neurol. 2020;77(10):1217–24.

    PubMed  Google Scholar 

  • Paillard-Borg S, Fratiglioni L, Winblad B, Wang HX. Leisure activities in late life in relation to dementia risk: principal component analysis. Dement Geriatr Cogn Disord. 2009;28(2):136–44.

    PubMed  Google Scholar 

  • Pan KY, Xu W, Mangialasche F, Dekhtyar S, Fratiglioni L, Wang HX. Working life psychosocial conditions in relation to late-life cognitive decline: a population-based cohort study. J Alzheimers Dis. 2019;67(1):315–25.

    CAS  PubMed  Google Scholar 

  • Pettigrew C, Soldan A, Zhu Y, Cai Q, Wang MC, Moghekar A, et al. Cognitive reserve and rate of change in Alzheimer’s and cerebrovascular disease biomarkers among cognitively normal individuals. Neurobiol Aging. 2020;88:33–41.

    CAS  PubMed  Google Scholar 

  • Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol. 1999;45(3):358–68.

    CAS  PubMed  Google Scholar 

  • Qiu C, Karp A, von Strauss E, Winblad B, Fratiglioni L, Bellander T. Lifetime principal occupation and risk of Alzheimer’s disease in the Kungsholmen project. Am J Ind Med. 2003;43(2):204–11.

    PubMed  Google Scholar 

  • Richards M, Deary IJ. A life course approach to cognitive reserve: a model for cognitive aging and development? Ann Neurol. 2005;58(4):617–22.

    PubMed  Google Scholar 

  • Richards M, Shipley B, Fuhrer R, Wadsworth M. Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. BMJ. 2004;328(7439):552.

    PubMed  PubMed Central  Google Scholar 

  • Riley KP, Snowdon DA, Desrosiers MF, Markesbery WR. Early life linguistic ability, late life cognitive function, and neuropathology: findings from the nun study. Neurobiol Aging. 2005;26(3):341–7.

    PubMed  Google Scholar 

  • Russ TC, Hannah J, Batty GD, Booth CC, Deary IJ, Starr JM. Childhood cognitive ability and incident dementia: the 1932 Scottish Mental Survey cohort into their 10th decade. Epidemiology. 2017;28(3):361–4.

    PubMed  PubMed Central  Google Scholar 

  • Salthouse TA. Theoretical perspectives on cognitive aging. Psychology Press; 1991.

    Google Scholar 

  • Salthouse TA. Mental exercise and mental aging: evaluating the validity of the “Use It or Lose It” hypothesis. Perspect Psychol Sci. 2006;1(1):68–87.

    PubMed  Google Scholar 

  • Satz P. Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology. 1993;7(3):273.

    Google Scholar 

  • Schooler C, Mulatu MS, Oates G. The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychol Aging. 1999;14(3):483.

    CAS  PubMed  Google Scholar 

  • Schooler C, Mulatu MS, Oates G. Occupational self-direction, intellectual functioning, and self-directed orientation in older workers: findings and implications for individuals and societies. Am J Sociol. 2004;110(1):161–97.

    Google Scholar 

  • Seeman TE. Social ties and health: the benefits of social integration. Ann Epidemiol. 1996;6(5):442–51.

    CAS  PubMed  Google Scholar 

  • Sindi S, Hagman G, Håkansson K, Kulmala J, Nilsen C, Kåreholt I, et al. Midlife work-related stress increases dementia risk in later life: the CAIDE 30-year study. J Gerontol B Psychol Sci Soc Sci. 2017;72(6):1044–53.

    PubMed  Google Scholar 

  • Smart EL, Gow AJ, Deary IJ. Occupational complexity and lifetime cognitive abilities. Neurology. 2014;83(24):2285–91.

    PubMed  PubMed Central  Google Scholar 

  • Smyth KA, Fritsch T, Cook TB, McClendon MJ, Santillan CE, Friedland RP. Worker functions and traits associated with occupations and the development of AD. Neurology. 2004;63(3):498–503.

    CAS  PubMed  Google Scholar 

  • Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: findings from the nun study. JAMA. 1996;275(7):528–32.

    CAS  PubMed  Google Scholar 

  • Spreng RN, Drzezga A, Diehl-Schmid J, Kurz A, Levine B, Perneczky R. Relationship between occupation attributes and brain metabolism in frontotemporal dementia. Neuropsychologia. 2011;49(13):3699–703.

    PubMed  Google Scholar 

  • Staudinger UM, Yu YL, Cheng B. Novel information processing at work across time is associated with cognitive change in later life: a 14-year longitudinal study. Psychol Aging. 2020;35(6):793–805.

    PubMed  Google Scholar 

  • Steffener J, Stern Y. Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2012;1822(3):467–73.

    CAS  Google Scholar 

  • Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(03):448–60.

    PubMed  Google Scholar 

  • Stern Y. Cognitive reserve. Neuropsychologia. 2009;47(10):2015–28.

    PubMed  PubMed Central  Google Scholar 

  • Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271(13):1004–10.

    CAS  PubMed  Google Scholar 

  • Stern Y, Alexander GE, Prohovnik I, Stricks L, Link B, Lennon MC, et al. Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer’s disease pathology. Neurology. 1995;45(1):55–60.

    CAS  PubMed  Google Scholar 

  • Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16(9):1305–11.

    PubMed  Google Scholar 

  • Then FS, Luck T, Luppa M, Thinschmidt M, Deckert S, Nieuwenhuijsen K, Seidler A, Riedel-Heller SG. Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occup Environ Med. 2014;71(5):358–65.

    PubMed  Google Scholar 

  • Tolppanen A-M, Solomon A, Kulmala J, Kåreholt I, Ngandu T, Rusanen M, et al. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 2015;11(4):434–43.

    PubMed  Google Scholar 

  • Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348:2508–16.

    PubMed  Google Scholar 

  • Wada M, Noda Y, Shinagawa S, Chung JK, Sawada K, Ogyu K, et al. Effect of education on Alzheimer’s disease-related neuroimaging biomarkers in healthy controls, and participants with mild cognitive impairment and Alzheimer’s disease: a cross-sectional study. J Alzheimers Dis. 2018;63(2):861–9.

    Google Scholar 

  • Wang H-X, Xu W, Pei J-J. Leisure activities, cognition and dementia. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2012a;1822(3):482–91.

    CAS  Google Scholar 

  • Wang H-X, Wahlberg M, Karp A, Winblad B, Fratiglioni L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 2012b;8(2):114–20.

    PubMed  Google Scholar 

  • Wang H-X, ** Y, Hendrie HC, Liang C, Yang L, Cheng Y, et al. Late life leisure activities and risk of cognitive decline. J Gerontol Ser A Biol Sci Med Sci. 2013;68(2):205–13.

    Google Scholar 

  • Wang HX, MacDonald SW, Dekhtyar S, Fratiglioni L. Association of lifelong exposure to cognitive reserve-enhancing factors with dementia risk: a community-based cohort study. PLoS Med. 2017;14(3):e1002251.

    PubMed  PubMed Central  Google Scholar 

  • Wang R, Qiu C, Dintica CS, Shang Y, Calderón Larrañaga A, Wang HX, et al. Shared risk and protective factors between Alzheimer’s disease and ischemic stroke: a population-based longitudinal study. Alzheimers Dement. 2021;17(2):191–204.

    CAS  PubMed  Google Scholar 

  • Whalley LJ, Starr JM, Athawes R, Hunter D, Pattie A, Deary IJ. Childhood mental ability and dementia. Neurology. 2000;55(10):1455–9.

    CAS  PubMed  Google Scholar 

  • Wilson RS, Yu L, Lamar M, Schneider JA, Boyle PA, Bennett DA. Education and cognitive reserve in old age. Neurology. 2019;92(10):e1041–50.

    PubMed  PubMed Central  Google Scholar 

  • Wu YT, Beiser AS, Breteler MMB, Fratiglioni L, Helmer C, Hendrie HC, et al. The changing prevalence and incidence of dementia over time – current evidence. Nat Rev Neurol. 2017;13(6):327–39.

    PubMed  Google Scholar 

  • Xu W, Tan L, Wang HF, Tan MS, Tan L, Li JQ, et al. Education and risk of dementia: dose-response meta-analysis of prospective cohort studies. Mol Neurobiol. 2016;53(5):3113–23.

    CAS  PubMed  Google Scholar 

  • Xu W, Wang HF, Wan Y, Tan CC, Yu JT, Tan L. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open. 2017;7(10):e014706.

    PubMed  PubMed Central  Google Scholar 

  • Yates LA, Ziser S, Spector A, Orrell M. Cognitive leisure activities and future risk of cognitive impairment and dementia: systematic review and meta-analysis. Int Psychogeriatr. 2016;28(11):1791–806.

    PubMed  Google Scholar 

  • Zahodne LB, Mayeda ER, Hohman TJ, Fletcher E, Racine AM, Gavett B, et al. The role of education in a vascular pathway to episodic memory: brain maintenance or cognitive reserve? Neurobiol Aging. 2019;84:109–18.

    PubMed  PubMed Central  Google Scholar 

  • Zhuo LB, Pei JJ, Yan Z, Yao W, Hao CF, Wang HX. Working life job strain status and cognitive aging in Europe: a 12-year follow-up study. J Affect Disord. 2021;295:1177–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-**n Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, R., Dekhtyar, S., Wang, HX. (2023). Cognitive Reserve: A Life-Course Perspective. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-24930-3_5

Download citation

Publish with us

Policies and ethics

Navigation