ITAR: A Method for Indoor RFID Trajectory Automatic Recovery

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2022)

Abstract

With the increasing popularity of Radio Frequency Identification (RFID) technology, indoor applications based on RFID trajectory data analysis are becoming more and more extensive, such as personnel location, tracking, and heat map analysis. The effectiveness of indoor applications relies greatly on high-quality trajectory data. However, due to the constraints of the device and environment, RFID readers will miss reading data in real-world practice, which leads to a large number of indoor trajectories that are incomplete. To enhance trajectory data and support indoor applications more efficiently, many trajectory recovery methods to infer trajectories in free space have been proposed. However, existing methods cannot achieve automated inference and have low accuracy in inferring indoor trajectories. In this paper, we propose an Indoor Trajectory Automatic Recovery framework, ITAR, to recover missing points in indoor trajectories. ITAR adopts a sequence-to-sequence learning architecture to generate complete trajectories. We first construct a directed graph for each trajectory and use a graph neural network to capture complex location transition patterns. Then, we propose a multi-head attention mechanism to capture long-term correlations among trajectory points to improve performance. We conduct extensive experiments on synthetic and real datasets, and the results show that ITAR is superior in performance and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baba, A.I., Jaeger, M., Lu, H., Pedersen, T.B., Ku, W.S., **e, X.: Learning-based cleansing for indoor RFID data. In: Proceedings of the 2016 International Conference on Management of Data, pp. 925–936 (2016)

    Google Scholar 

  2. Baba, A.I., Lu, H., Pedersen, T.B., **e, X.: Handling false negatives in indoor RFID data. In: 2014 IEEE 15th International Conference on Mobile Data Management, vol. 1, pp. 117–126. IEEE (2014)

    Google Scholar 

  3. Baba, A.I., Lu, H., **e, X., Pedersen, T.B.: Spatiotemporal data cleansing for indoor RFID tracking data. In: 2013 IEEE 14th International Conference on Mobile Data Management, vol. 1, pp. 187–196. IEEE (2013)

    Google Scholar 

  4. Derakhshan, R., Orlowska, M.E., Li, X.: RFID data management: challenges and opportunities. In: 2007 IEEE International Conference on RFID, pp. 175–182. IEEE (2007)

    Google Scholar 

  5. Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F.: Cleaning trajectory data of RFID-monitored objects through conditioning under integrity constraints. In: EDBT, pp. 379–390 (2014)

    Google Scholar 

  6. Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F.: Offline cleaning of RFID trajectory data. In: Proceedings of the 26th International Conference on Scientific and Statistical Database Management, pp. 1–12 (2014)

    Google Scholar 

  7. Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F.: Interpreting RFID tracking data for simultaneously moving objects: an offline sampling-based approach. Expert Syst. Appl. 152, 113368 (2020)

    Article  Google Scholar 

  8. Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)

    Google Scholar 

  9. Feng, Y., Huang, W., Wang, S., Zhang, Y., Jiang, S.: Detection of RFID cloning attacks: a spatiotemporal trajectory data stream-based practical approach. Comput. Netw. 189, 107922 (2021)

    Article  Google Scholar 

  10. Floerkemeier, C., Lampe, M.: Issues with RFID usage in ubiquitous computing applications. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 188–193. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_13

    Chapter  Google Scholar 

  11. Gu, Yu., Yu, G., Chen, Y., Ooi, B.C.: Efficient RFID data imputation by analyzing the correlations of monitored objects. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 186–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00887-0_15

    Chapter  Google Scholar 

  12. Hu, K.F., Li, L., Lu, Z.P.: AgCleaning: a track data filling algorithm based on movement recency for RFID track data. In: Applied Mechanics and Materials, vol. 490, pp. 1330–1337. Trans Tech Publ (2014)

    Google Scholar 

  13. Huang, W., Zhang, Y., Feng, Y.: ACD: an adaptable approach for RFID cloning attack detection. Sensors 20(8), 2378 (2020)

    Article  Google Scholar 

  14. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  15. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam (2017)

    Google Scholar 

  16. Luo, Y., Cai, X., Zhang, Y., Xu, J., et al.: Multivariate time series imputation with generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Morzy, M.: Prediction of moving object location based on frequent trajectories. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 583–592. Springer, Heidelberg (2006). https://doi.org/10.1007/11902140_62

    Chapter  Google Scholar 

  18. Ren, H., et al.: Mtrajrec: map-constrained trajectory recovery via seq2seq multi-task learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1410–1419 (2021)

    Google Scholar 

  19. Sun, H., Yang, C., Deng, L., Zhou, F., Huang, F., Zheng, K.: Periodicmove: shift-aware human mobility recovery with graph neural network. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 1734–1743 (2021)

    Google Scholar 

  20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  21. Tong, C., Chen, H., Xuan, Q., Yang, X.: A framework for bus trajectory extraction and missing data recovery for data sampled from the internet. Sensors 17(2), 342 (2017)

    Article  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS 2017, pp. 6000–6010. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  23. Wang, J., Wu, N., Lu, X., Zhao, W.X., Feng, K.: Deep trajectory recovery with fine-grained calibration using Kalman filter. IEEE Trans. Knowl. Data Eng. 33(3), 921–934 (2019)

    Google Scholar 

  24. Wang, S., Cao, Z., Zhang, Y., Huang, W., Jiang, J.: A temporal and spatial data redundancy processing algorithm for RFID surveillance data. Wirel. Commun. Mob. Comput. 2020 (2020)

    Google Scholar 

  25. Wheeb, A.H.: Performance analysis of VOIP in wireless networks. Int. J. Comput. Netw. Wirel. Commun. (IJCNWC) 7(4), 1–5 (2017)

    Google Scholar 

  26. Wu, H., Chen, Z., Sun, W., Zheng, B., Wang, W.: Modeling trajectories with recurrent neural networks. In: IJCAI (2017)

    Google Scholar 

  27. **, D., Zhuang, F., Liu, Y., Gu, J., **ong, H., He, Q.: Modelling of bi-directional spatio-temporal dependence and users’ dynamic preferences for missing poi check-in identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5458–5465 (2019)

    Google Scholar 

  28. **a, T., et al.: AttnMove: history enhanced trajectory recovery via attentional network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4494–4502 (2021)

    Google Scholar 

  29. **e, L., Yin, Y., Vasilakos, A.V., Lu, S.: Managing RFID data: challenges, opportunities and solutions. IEEE Commun. Surv. Tutor. 16(3), 1294–1311 (2014)

    Article  Google Scholar 

  30. Yang, C., Sun, M., Zhao, W.X., Liu, Z., Chang, E.Y.: A neural network approach to jointly modeling social networks and mobile trajectories. ACM Trans. Inf. Syst. (TOIS) 35(4), 1–28 (2017)

    Article  Google Scholar 

  31. Zhao, J., Xu, J., Zhou, R., Zhao, P., Zhu, F.: On prediction of user destination by sub-trajectory understanding: a deep learning based approach. In: the 27th ACM International Conference (2018)

    Google Scholar 

  32. Zhao, Z., Ng, W.: A model-based approach for RFID data stream cleansing. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 862–871 (2012)

    Google Scholar 

  33. Zheng, S., Yue, Y., Hobbs, J.: Generating long-term trajectories using deep hierarchical networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC02040300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siye Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Z., Wang, S., Sun, D., Zhang, Y., Feng, Y., Jiang, S. (2022). ITAR: A Method for Indoor RFID Trajectory Automatic Recovery. In: Gao, H., Wang, X., Wei, W., Dagiuklas, T. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 461. Springer, Cham. https://doi.org/10.1007/978-3-031-24386-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24386-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24385-1

  • Online ISBN: 978-3-031-24386-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation