Depressive Disorder Prediction Using Machine Learning-Based Electroencephalographic Signal

  • Chapter
  • First Online:
Artificial Intelligence for Smart Healthcare

Abstract

Machine learning is an effective method to analyze enormous information sets precisely, particularly those with recognized designs, which have also proven to be extremely important for the determination of EEG signals because of their reduced bias frequency and high design sensitivity. Among the most severe mental disorders is a mental illness, which is even worse when it leads to suicide. It is critical to diagnose depression in its early stages. Electroencephalographic (EEG) signals are acquired from a publicly accessible database and analyzed in MATLAB in this paper; it may also lead to various abnormalities such as sleep problems and alcohol addiction. Using the classifier tools included in it can help categorize topics with disorders. The parameters are taken from frequency bands (Alpha, Delta, Theta, Beta).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duan L, Duan H, Qiao Y, Sha S, Qi S, Zhang X, Huang J, Huang X, and Wang C.: Machine learning approaches for MDD detection and emotion decoding using EEG signals, Frontiers Hum. Neurosci., 14, 284, (2020).

    Google Scholar 

  2. Fisch, B, J.: EEG Premier: Basic principles of digital and analog EEG (3rd Edition), Elsevier publication, (1999).

    Google Scholar 

  3. Harris, F.J.: On the use of windows for harmonic analysis with discrete Fourier transform, Proceedings of the IEEE, 66 (1), 51–83, (1978).

    Article  Google Scholar 

  4. Hazarika, N., Chen, J.Z., Tsoi, A.C., Sergejew, A.: Classification of EEG Signals Using the Wavelet Transform, Signal Process, 59 (1), 61–72, (1997).

    Google Scholar 

  5. Jasper, H.H.: The ten-twenty electrode system of the International Federation, Electroencephalogram. Clinical. Neurophysiology, 10, 367–380, (1958).

    Google Scholar 

  6. Khan, N.A., Jönsson, P., Sandsten, M., Performance comparison of time-frequency distributions for estimation of instantaneous frequency of heart rate variability signals. Appl. Sci. 7 (3), 221 (2017).

    Google Scholar 

  7. Knott, Verner., Mahoney, Colleen., Kennedy, Sidney, Evans, Kenneth: EEG power, frequency, asymmetry and coherence in male depression. Psych. Res. Neuroimaging Sect. 106, 123–140 (2001).

    Google Scholar 

  8. S. Sudhakar and S. Chenthur Pandian “Secure packet encryption and key exchange system in mobile ad hoc network”, Journal of Computer Science, vol. 8, no. 6, pp. 908–912, (2012).

    Google Scholar 

  9. S. Sudhakar and S. Chenthur Pandian, “Hybrid cluster-based geographical routing protocol to mitigate malicious nodes in mobile ad hoc network”, International Journal of Ad Hoc and Ubiquitous Computing, vol. 21 no. 4, pp. 224–236, (2016).

    Google Scholar 

  10. A. U. Priyadarshni and S. Sudhakar, “Cluster-based certificate revocation by cluster head in mobile ad-hoc network”, International Journal of Applied Engineering Research, vol. 10, no. 20, pp. 16014–16018, (2015).

    Google Scholar 

  11. S. Sudhakar and S. Chenthur Pandian, “Investigation of attribute aided data aggregation over dynamic routing in wireless sensor,” Journal of Engineering Science and Technology, vol. 10, no. 11, pp. 1465–1476, (2015).

    Google Scholar 

  12. S. Sudhakar and S. Chenthur Pandian, “Trustworthy position-based routing to mitigate against the malicious attacks to signifies secured data packet using geographic routing protocol in MANET”, WSEAS Transactions on Communications, vol. 12, no. 11, pp. 584–603, (2013).

    Google Scholar 

  13. S. Sudhakar and S. Chenthur Pandian, “A Trust and co-operative nodes with affects of malicious attacks and measure the performance degradation on geographic aided routing in mobile ad hoc network”, Life Science Journal, vol. 10, no. 4s, pp. 158–163, (2013).

    Google Scholar 

  14. S. Sudhakar and S. Chenthur Pandian, “An efficient agent-based intrusion detection system for detecting malicious nodes in MANET routing”, International Review on Computers and Software (I.RE.CO.S.), vol. 7, no. 6, pp. 3037–304, (2012).

    Google Scholar 

  15. S. Sudhakar and S. Chenthur Pandian, “Authorized node detection and accuracy in position-based information for MANET”, European Journal of Scientific Research, vol. 70, no. 2, pp. 253–265, (2012).

    Google Scholar 

  16. Li X, La R, Wang Y, Hu B and Zhang X, A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography, Frontiers Neurosci., 14, 192, (2020).

    Google Scholar 

  17. Mohanty N.P., Dash S.S., Sobhan S., Swarnkar T. Prediction of Depression Using EEG: A Comparative Study. In: Panigrahi C.R., Pati B., Mohapatra P., Buyya R., Li KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, 199. Springer, Singapore (2021).

    Google Scholar 

  18. Muthuswamy, J., Sherman, D., Thakor, N.: Higher-order spectral analysis of burst patterns in EEG, IEEE Transactions on Biomedical Engineering, 46 (1), 92–99, (1999).

    Article  Google Scholar 

  19. Niedermeyer, E., Lopes da Silva, F.: Electroencephalography: basic principles, clinical applications, and related fields, Lippincott Williams & Wilkins, ISBN 0781751268, 5th Edition, (2005).

    Google Scholar 

  20. Palaniappan, P.: Identifying Individuality Using Mental Task-Based Brain-Computer Interface, in 3rd International Conference on Intelligent Sensing and Information Processing, ICISIP, 238–242, (2005).

    Google Scholar 

  21. Sri, K.S., Rajapakse, J.C.: Extracting EEG rhythms using ICA-R. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008. (IEEE World Congress on Computational Intelligence), 2133–2138 (2008).

    Google Scholar 

  22. WHO-World Health Organization, website: http://www.who.int, (2011).

  23. **e Y, Yang B, Lu X, Zheng M, Fan C, Bi X, Zhou S and Li Y, Anxiety and depression diagnosis method based on brain networks and convolutional neural networks, in Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 1503–1506, (2020).

    Google Scholar 

  24. A. Jain, A. Kumar, and S. Sharma, “Comparative Design and Analysis of Mesh, Torus and Ring NoC,” Procedia Comput. Sci., vol. 48, pp. 330–337, (2015).

    Google Scholar 

  25. A. Jain, R. Dwivedi, A. Kumar, and S. Sharma, “Scalable design and synthesis of 3D mesh network on chip,” in Proceeding of International Conference on Intelligent Communication, Control and Devices, pp. 661–666 (2017).

    Google Scholar 

  26. A. Jain, A. K. Gahlot, R. Dwivedi, A. Kumar, and S. K. Sharma, “Fat Tree NoC Design and Synthesis,” in Intelligent Communication, Control and Devices, Springer, pp. 1749–1756, (2018).

    Google Scholar 

  27. S. K. Sharma, A. Jain, K. Gupta, D. Prasad, and V. Singh, “An internal schematic view and simulation of major diagonal mesh network-on-chip,” J. Comput. Theor. Nanosci., vol. 16, no. 10, pp. 4412–4417, (2019).

    Article  Google Scholar 

  28. D. Ghai, H. K. Gianey, A. Jain, and R. S. Uppal, “Quantum and dual-tree complex wavelet transform-based image watermarking,” Int. J. Mod. Phys. B, vol. 34, no. 04, p. 2050009, (2020).

    Article  Google Scholar 

  29. A. Jain and A. Kumar, “Desmogging of still smoggy images using a novel channel prior,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 1161–1177, (2021).

    Article  Google Scholar 

  30. S. Kumar et al., “A Comparative Analysis of Machine Learning Algorithms for Detection of Organic and Nonorganic Cotton Diseases,” Math. Probl. Eng., vol. 2021, (2021).

    Google Scholar 

  31. N. R. Misra, S. Kumar, and A. Jain, “A Review on E-waste: Fostering the Need for Green Electronics,” in 2021 International Conference on Computing, Communication, and Intelligent Systems, pp. 1032–1036 (2021).

    Google Scholar 

  32. A. Jain, R. Dwivedi, A. Kumar, and S. Sharma, “Network on chip router for 2D mesh design,” Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 9, p. 1092, (2016).

    Google Scholar 

  33. A. Jain, A. K. AlokGahlot, and S. K. S. RakeshDwivedi, “Design and FPGA Performance Analysis of 2D and 3D Router in Mesh NoC,” Int. J. Control Theory Appl. IJCTA ISSN, pp. 0974–5572, (2017).

    Google Scholar 

  34. D. S. Gupta and G. P. Biswas, “On securing bi-and tri-partite session key agreement protocol using IBE framework,” Wireless Pers. Commun., vol. 96, no. 3, pp. 4505–4524, (2017).

    Article  Google Scholar 

  35. Agarwal A.K., Rani L., Tiwari R.G., Sharma T., Sarangi P.K. Honey Encryption: Fortification Beyond the Brute-Force Impediment. In: Manik G., Kalia S., Sahoo S.K., Sharma T.K., Verma O.P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0942-8_64 (2021).

    Chapter  Google Scholar 

  36. Khullar V, Singh HP, Agarwal AK. Spoken buddy for individuals with autism spectrum disorder. Asian J Psychiatr. Aug; 62 102712. https://doi.org/10.1016/j.ajp.2021.102712. PMID: 34091205 (2021).

  37. Agarwal, A.K., Jain, A., Synthesis of 2D and 3D NoC Mesh Router Architecture in HDL Environment, Jour of Adv Research in Dynamical & Control Systems, 11(04) (2019).

    Google Scholar 

  38. Mathivanan, S., & Jayagopal, P. A big data virtualization role in agriculture: a comprehensive review. Walailak Journal of Science and Technology (WJST), 16(2), 55–70 (2019).

    Article  Google Scholar 

  39. D. S. Gupta and G. P. Biswas, “An ECC-based authenticated group key exchange protocol in IBE framework,” International Journal of Communication Systems, vol. 30, no. 18, p. e3363, (2017).

    Google Scholar 

  40. Kumar, M. S., & Prabhu, J. Hybrid model for movie recommendation system using fireflies and fuzzy c-means. International Journal of Web Portals, 11(2), 1–13 (2019).

    Article  Google Scholar 

  41. F. J. John Joseph, R. T, and J. J. C, “Classification of correlated subspaces using HoVer representation of Census Data,” in 2011 International Conference on Emerging Trends in Electrical and Computer Technology, pp. 906–911, (2011).

    Google Scholar 

  42. S. Bhoumik, S. Chatterjee, A. Sarkar, A. Kumar, and F. J. John Joseph, “Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network,” in CSBio ’20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics, pp. 106–107, (2020).

    Google Scholar 

  43. Rajendran, S., Mathivanan, S. K., Jayagopal, P., Janaki, K. P., Bernard, B. A. M. M., Pandy, S., & Somanathan, M. S. Emphasizing privacy and security of edge intelligence with machine learning for healthcare. International Journal of Intelligent Computing and Cybernetics (2021).

    Google Scholar 

  44. Nora Omran Alkaam, Ahmed J. Obaid, Mohammed Q. Mohammed, 2018. A Hybrid Technique for Object Detection and Recognition Using Local Features Algorithms, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10, No. 2: 2330–2344.

    Google Scholar 

  45. Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access, 9, 39707–39716 (2021).

    Article  Google Scholar 

  46. Rajendran, S., Mathivanan, S. K., Jayagopal, P., Venkatasen, M., Pandi, T., Somanathan, M. S., … & Mani, P. Language dialect based speech emotion recognition through deep learning techniques. International Journal of Speech Technology, 1–11 (2021).

    Google Scholar 

  47. D. S. Gupta and G. P. Biswas, “Design of lattice-based ELGamal encryption and signature schemes using SIS problem,” Trans. Emerg. Telecommun.Technol., vol. 29, no. 6, Art. no. e3255 (2018).

    Google Scholar 

  48. Kumar, S., & Jayagopal, P. Delineation of field boundary from multispectral satellite images through U-Net segmentation and template matching. Ecological Informatics, 64, 101370 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganiga, G.R., Subramani, K., Sharma, D.K., Sengan, S., Anbalagan, K., Seenivasan, P. (2023). Depressive Disorder Prediction Using Machine Learning-Based Electroencephalographic Signal. In: Agarwal, P., Khanna, K., Elngar, A.A., Obaid, A.J., Polkowski, Z. (eds) Artificial Intelligence for Smart Healthcare. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-23602-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23602-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23601-3

  • Online ISBN: 978-3-031-23602-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation